- *(9.1) Suppose $\{\mathbb{P}_t : t \in \mathcal{T}\}$ and $\{\widetilde{\mathbb{P}}_t : t \in \mathcal{T}\}$ are two candidates for the conditional probability distribution described in UGMTP Definition 5.4. Suppose the sigma-field \mathcal{F} is countably generated, that is, $\mathcal{F} = \sigma(\mathcal{E})$ for some countable collection \mathcal{E} of sets.
 - (i) Show that there is no loss of generality in assuming that \mathcal{E} is stable under the formation of finite intersections.
 - (ii) For each $E \in \mathcal{E}$, show that $\mathbb{P}_t E = \widetilde{\mathbb{P}}_t E$ a.e [Q]. Hint: Consider $\mathbb{P}\{\omega \in E, T\omega \in B\}$ for various $B \in \mathcal{B}$.
 - (iii) Show that there exists a Q-negligible set \mathbb{N} such that $\mathbb{P}_t = \widetilde{\mathbb{P}}_t$, as measures on \mathcal{F} , for all $t \in \mathbb{N}^c$.
- *(9.2) In class I considered a probability measure $\mathbb{P} = P \otimes P$ on $\mathcal{B}(\mathbb{R}^2)$, where *P* is a nonatomic measure with distribution function *F*. For the map $T(x, y) = \max(x, y)$, with distribution *Q*, I asserted that the conditional distributions take the form $\mathbb{P}_t = \frac{1}{2}\mu_t \otimes \delta_t + \frac{1}{2}\delta_t \otimes \mu_t$, where δ_t denotes the probability measure concentrated at the single point *t* and μ_t denotes the probability measure with density $\{x \le t\}/F(t)$ with respect to *P*, provided F(t) > 0.
 - (i) Show that $Q\{t : F(t) = 0\} = 0$.
 - (ii) For some arbitrary probability measure ν on $\mathcal{B}(\mathbb{R}^2)$, define $\mathbb{P}_t = \nu$ when F(t) = 0. Show that $\{\mathbb{P}_t : t \in \mathbb{R}\}$ is (one possible choice for) the conditional distributions.

For the next problem you may assume the following result. Suppose that $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Let \mathcal{G} be a sub-sigma-field of \mathcal{F} . If g is a \mathcal{G} -measurable, real-valued random variable on Ω for which $gX \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, then $\mathbb{P}_{\mathcal{G}}(gX) = g\mathbb{P}_{\mathcal{G}}X$ almost surely.

*(9.3) Suppose $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and that \mathcal{G} is a sub-sigma-field of \mathcal{F} . Show that $\operatorname{var}(X) = \operatorname{var}(\mathbb{P}_{\mathcal{G}}X) + \mathbb{P}(\operatorname{var}_{\mathcal{G}}X)$, where $\operatorname{var}_{\mathcal{G}}(X) = \mathbb{P}_{\mathcal{G}}\left((X - \mathbb{P}_{\mathcal{G}}X)^2\right)$.