Chapter 2 A modicum of measure theory

2 February 2004: Modification of Section 2.11.

*1. Generating classes of functions

Theorem $\langle DYNKIN.THM \rangle$ is often used as the starting point for proving facts about measurable functions. One first invokes the Theorem to establish a property for sets in a sigma-field, then one extends by taking limits of simple functions to \mathcal{M}^+ and beyond, using Monotone Convergence and linearity arguments. Sometimes it is simpler to invoke an analog of the λ -system property for classes of functions.

<1> Definition. Let \mathcal{H} be a set of bounded, real-valued functions on a set \mathcal{X} . Call \mathcal{H} a λ -space if:

- (i) H is a vector space
- (i) each constant function belongs to \mathcal{H} ;
- (ii) if {h_n} is an increasing sequence of functions in H whose pointwise limit h is bounded then h ∈ H.

The sigma-field properties of λ -spaces are slightly harder to establish than their λ -system analogs, but the reward of more streamlined proofs will make the extra, one-time effort worthwhile. First we need an analog of the fact that a λ -system that is stable under finite intersections is also a sigma-field.

Remember that $\sigma(\mathcal{H})$ is the smallest σ -field on \mathcal{X} for which each h in \mathcal{H} is $\sigma(\mathcal{H}) \setminus \mathcal{B}(\mathbb{R})$ -measurable. It is the σ -field generated by the collection of sets $\{h \in B\}$ with $h \in \mathcal{H}$ and $B \in \mathcal{B}(\mathbb{R})$. It is also generated by

$$\mathcal{E}_{\mathcal{H}} := \{ \{ h < c \} : h \in \mathcal{H}, \ c \in \mathbb{R} \}.$$

<2> Lemma. If a λ -space \mathcal{H} is stable under the formation of pointwise products of pairs of functions then it consists of all bounded, $\sigma(\mathcal{H})$ -measurable functions.

Proof. By definition, every function in \mathcal{H} is $\sigma(\mathcal{H})$ -measurable. The proof that every bounded, $\sigma(\mathcal{H})$ -measurable function belongs to \mathcal{H} will follow from the following four facts:

- (a) \mathcal{H} is stable under uniform limits
- (b) if h_1 and h_2 are in \mathcal{H} then so are $h_1 \vee h_2$ and $h_1 \wedge h_2$

Chapter 2: A modicum of measure theory

- (c) the collection of sets $A_0 := \{A \in \mathcal{A} : A \in \mathcal{H}\}$ is a σ -field
- (d) $\mathcal{E}_{\mathcal{H}} \subseteq \mathcal{A}_0$ and hence $\sigma(\mathcal{H}) = \sigma(\mathcal{E}_{\mathcal{H}}) \subseteq \mathcal{A}_0$

For suppose g is a bounded, $\sigma(\mathcal{H})$ -measurable function. With no loss of generality (or by means of some linear rescaling) we may assume that $0 \le g \le 1$. For each real c, the (indicator function of the) $\sigma(\mathcal{H})$ -measurable set $\{g \ge c\}$ belongs to \mathcal{H} , by virtue of (d) and (c). The vector space property of \mathcal{H} ensures that the simple function $g_n := 2^{-n} \sum_{i=1}^{2^n} \{g \ge i/2^n\}$ also belongs to \mathcal{H} . Stability of \mathcal{H} under uniform limits then implies that $g \in \mathcal{H}$.

Proof of (a). Suppose $h_n \to h$ uniformly, with $h_n \in \mathcal{H}$. Write δ_n for 2^{-n} . With no loss of generality we may suppose $h_n + \delta_n \ge h \ge h_n - \delta_n$ for all *n*. Notice that

$$h_n + 3\delta_n = h_n + \delta_n + \delta_{n-1} \ge h + \delta_{n-1} \ge h_{n-1}.$$

the functions $g_n := h_n + 3(\delta_1 + \ldots + \delta_n)$ all belong to \mathcal{H} , and $g_n \uparrow h + 3$. It follows that $h + 3 \in \mathcal{H}$, and hence, $h \in \mathcal{H}$.

Proof of (b). It is enough if we show that $h^+ \in \mathcal{H}$ for each h in \mathcal{H} , because $h_1 \vee h_2 = h_1 + (h_2 - h_1)^+$ and $-(h_1 \wedge h_2) = (-h_1) \vee (-h_2)$. Suppose $c \le h \le d$, for constants c and d. First note that, for every polynomial $p(y) = a_0 + a_1 y \ldots + a_m y^m$, we have

$$p(h) = a_0 + a_1h + \ldots + a_mh^m \in \mathcal{H},$$

because the constant function a_0 and each of the powers h^k belong to the vector space \mathcal{H} . By a minor extension of the Weierstrass approximation result from Problem [WEIERSTRASS], the continuous function $y \mapsto y^+$ can be uniformly approximated by a polynomial on the interval [c, d]. That is, there exists a sequence of polynomials p_n such that $\sup_{c \le y \le d} |p_n(y) - y^+| \to 0$ as $n \to \infty$. In particular, h^+ is a uniform limit of $p_n(h)$, so that $h^+ \in \mathcal{H}$ by virtue of (a).

Proof of (c). The fact that $1 \in \mathcal{H}$ and the stability of \mathcal{H} under monotone limits, differences, and finite products implies that \mathcal{A}_0 is a λ -system of sets that is stable under finite intersections, that is, \mathcal{A}_0 is a σ -field.

Proof of (d). Suppose $h \in \mathcal{H}$ and $c \in \mathbb{R}$. By (b), the function

$$h_0 := (1 + h - c)^+ \wedge 1$$

belongs to \mathcal{H} . Notice that $0 \le h_0 \le 1$ and $\{h_0 = 1\} = \{h \ge c\}$. As a monotone increasing limit of functions $1 - h_0^n$ from \mathcal{H} , the (indicator function of the) set $\{h < c\}$ also belongs to \mathcal{H} .

□ <3>

Theorem. Let \mathcal{G} be a set of functions from a λ -space \mathcal{H} . If \mathcal{G} is stable under the formation of pointwise products of pairs of functions then \mathcal{H} contains all bounded, $\sigma(\mathcal{G})$ -measurable functions.

Proof. Let \mathcal{H}_0 be the smallest λ -space containing \mathcal{G} . By Lemma <2>, it is enough to show that \mathcal{H}_0 is stable under pairwise products.

18

2.1 Generating classes of functions

Argue as in Theorem $\langle DYNKIN, THM \rangle$ for λ -systems of sets. An almost routine calculation shows that $\mathcal{H}_1 := \{h \in \mathcal{H}_0 : hg \in \mathcal{H}_0 \text{ for all } g \text{ in } \mathcal{G}\}$ is a λ -space containing G. The only subtlety lies in showing that \mathcal{H}_1 is stable under monotone increasing limits. If $h_n \in \mathcal{H}_1$ and $h_n \uparrow h$ and $g \ge 0$, then $gh_n \uparrow gh$. At points where g is strictly negative, the sequence gh_n would not be increasing. However, we can find a constant C large enough that $g + C \ge 0$ everywhere, and hence ghbelongs to \mathcal{H}_0 as a monotone inceasing limit of \mathcal{H}_0 functions $h_ng + Ch_n - Ch$. It follows that $\mathcal{H}_1 = \mathcal{H}_0$. That is, $h_0 g \in \mathcal{H}_0$ for all $h_0 \in \mathcal{H}_0$ and $g \in \mathcal{G}$.

Similarly, $\mathcal{H}_2 := \{h \in \mathcal{H}_0 : h_0 h \in \mathcal{H}_0 \text{ for all } h_0 \text{ in } \mathcal{H}_0 \}$ is a λ -space. By the result for \mathcal{H}_1 we have $\mathcal{H}_2 \supseteq \mathcal{G}$, and hence $\mathcal{H}_2 = \mathcal{H}_0$. That is, \mathcal{H}_0 is stable under products.

Exercise. Let μ be a finite measure on $\mathcal{B}(\mathbb{R}^k)$. Write \mathbb{C}_0 for the vector space <4> of all continuous real functions on \mathbb{R}^k with compact support. Suppose f belongs to $\mathcal{L}^1(\mu)$. Show that for each $\epsilon > 0$ there exists a g in \mathbb{C}_0 such that $\mu |f - g| < \epsilon$. That is, show that \mathbb{C}_0 is dense in $\mathcal{L}^1(\mu)$ under its \mathcal{L}^1 norm.

SOLUTION: Define \mathcal{H} as the collection of all bounded functions in $\mathcal{L}^{1}(\mu)$ that can be approximated arbitrarily closely (in $\mathcal{L}^1(\mu)$ norm) by functions from \mathbb{C}_0 . Check that \mathcal{H} is a λ -space. Trivially it contains \mathbb{C}_0 . The sigma-field $\sigma(\mathbb{C}_0)$ coincides with the Borel sigma-field. Why? The class H consists of all bounded, nonnegative Borel measurable functions.

See Problem [C0.DENSE2] for the extension of the approximation result to infinite measures.

More detail needed?