
Chapter 2

A modicum of measure theory

2 February 2004: Modification of Section 2.11.

*1. Generating classes of functions

Theorem <Dynkin.thm> is often used as the starting point for proving facts about
measurable functions. One first invokes the Theorem to establish a property for
sets in a sigma-field, then one extends by taking limits of simple functions to M+

and beyond, using Monotone Convergence and linearity arguments. Sometimes it is
simpler to invoke an analog of the λ-system property for classes of functions.

<1> Definition. Let H be a set of bounded, real-valued functions on a set X. Call H

a λ-space if:

(i) H is a vector space

(i) each constant function belongs to H;

(ii) if {hn} is an increasing sequence of functions in H whose pointwise limit h
is bounded then h ∈ H.

The sigma-field properties of λ-spaces are slightly harder to establish than their
λ-system analogs, but the reward of more streamlined proofs will make the extra,
one-time effort worthwhile. First we need an analog of the fact that a λ-system that
is stable under finite intersections is also a sigma-field.

Remember that σ(H) is the smallest σ -field on X for which each h in H is
σ(H)\B(R)-measurable. It is the σ -field generated by the collection of sets {h ∈ B}
with h ∈ H and B ∈ B(R). It is also generated by

EH := { {h < c} : h ∈ H, c ∈ R}.
<2> Lemma. If a λ-space H is stable under the formation of pointwise products of

pairs of functions then it consists of all bounded, σ(H)-measurable functions.

Proof. By definition, every function in H is σ(H)-measurable. The proof that every
bounded, σ(H)-measurable function belongs to H will follow from the following
four facts:

(a) H is stable under uniform limits

(b) if h1 and h2 are in H then so are h1 ∨ h2 and h1 ∧ h2



18 Chapter 2: A modicum of measure theory

(c) the collection of sets A0 := {A ∈ A : A ∈ H} is a σ -field

(d) EH ⊆ A0 and hence σ(H) = σ(EH) ⊆ A0

For suppose g is a bounded, σ(H)-measurable function. With no loss of generality
(or by means of some linear rescaling) we may assume that 0 ≤ g ≤ 1. For each
real c, the (indicator function of the) σ(H)-measurable set {g ≥ c} belongs to H,
by virtue of (d) and (c). The vector space property of H ensures that the simple
function gn := 2−n

∑2n

i=1{g ≥ i/2n} also belongs to H. Stability of H under uniform
limits then implies that g ∈ H.

Proof of (a). Suppose hn → h uniformly, with hn ∈ H. Write δn for 2−n . With no
loss of generality we may suppose hn + δn ≥ h ≥ hn − δn for all n. Notice that

hn + 3δn = hn + δn + δn−1 ≥ h + δn−1 ≥ hn−1.

the functions gn := hn + 3(δ1 + . . . + δn) all belong to H, and gn ↑ h + 3. It follows
that h + 3 ∈ H, and hence, h ∈ H.

Proof of (b). It is enough if we show that h+ ∈ H for each h in H, because
h1 ∨ h2 = h1 + (h2 − h1)

+ and − (
h1 ∧ h2

) = (−h1) ∨ (−h2). Suppose c ≤ h ≤ d, for
constants c and d. First note that, for every polynomial p(y) = a0 + a1 y . . . + am ym ,
we have

p(h) = a0 + a1h + . . . + amhm ∈ H,

because the constant function a0 and each of the powers hk belong to the vector
space H. By a minor extension of the Weierstrass approximation result from
Problem [weierstrass], the continuous function y 	→ y+ can be uniformly
approximated by a polynomial on the interval [c, d]. That is, there exists a sequence
of polynomials pn such that supc≤y≤d |pn(y) − y+| → 0 as n → ∞. In particular, h+

is a uniform limit of pn(h), so that h+ ∈ H by virtue of (a).

Proof of (c). The fact that 1 ∈ H and the stability of H under monotone limits,
differences, and finite products implies that A0 is a λ-system of sets that is stable
under finite intersections, that is, A0 is a σ -field.

Proof of (d). Suppose h ∈ H and c ∈ R. By (b), the function

h0 := (
1 + h − c

)+ ∧ 1

belongs to H. Notice that 0 ≤ h0 ≤ 1 and {h0 = 1} = {h ≥ c}. As a monotone
increasing limit of functions 1 − hn

0 from H, the (indicator function of the) set
{h < c} also belongs to H.�

<3> Theorem. Let G be a set of functions from a λ-space H. If G is stable under the
formation of pointwise products of pairs of functions then H contains all bounded,
σ(G)-measurable functions.

Proof. Let H0 be the smallest λ-space containing G. By Lemma <2>, it is enough
to show that H0 is stable under pairwise products.
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Argue as in Theorem <Dynkin.thm> for λ-systems of sets. An almost
routine calculation shows that H1 := {h ∈ H0 : hg ∈ H0 for all g in G } is a λ-space
containing G. The only subtlety lies in showing that H1 is stable under monotone
increasing limits. If hn ∈ H1 and hn ↑ h and g ≥ 0, then ghn ↑ gh. At points
where g is strictly negative, the sequence ghn would not be increasing. However,
we can find a constant C large enough that g + C ≥ 0 everywhere, and hence gh
belongs to H0 as a monotone inceasing limit of H0 functions hng + Chn − Ch. It
follows that H1 = H0. That is, h0g ∈ H0 for all h0 ∈ H0 and g ∈ G.

Similarly, H2 := {h ∈ H0 : h0h ∈ H0 for all h0 in H0 } is a λ-space. By the
result for H1 we have H2 ⊇ G, and hence H2 = H0. That is, H0 is stable under
products.�

<4> Exercise. Let µ be a finite measure on B(Rk). Write C0 for the vector space
of all continuous real functions on R

k with compact support. Suppose f belongs
to L1(µ). Show that for each ε > 0 there exists a g in C0 such that µ| f − g| < ε.
That is, show that C0 is dense in L1(µ) under its L1 norm.�
Solution: Define H as the collection of all bounded functions in L1(µ) that can
be approximated arbitrarily closely (in L1(µ) norm) by functions from C0. Check
that H is a λ-space. Trivially it contains C0. The sigma-field σ(C0) coincides with
the Borel sigma-field. Why? The class H consists of all bounded, nonnegative
Borel measurable functions.More detail needed?

See Problem [C0.dense2] for the extension of the approximation result to
infinite measures.�


