Please attempt at least the starred problems.

- *(1.1) Please send to me (david.pollard@yale.edu) an email stating whether you have taken (or are in the process of taking) real analysis, measure theory, or any probability course.
- *(1.2) Suppose T maps a set \mathfrak{X} into a set \mathfrak{Y} . For $B \subseteq \mathfrak{Y}$ define $T^{-1}B := \{x \in \mathfrak{X} : T(x) \in B\}$. For $A \subseteq \mathfrak{X}$ define $T(A) := \{T(x) : x \in A\}$. Some of the following assertions are true in general and some are false.

$$T\left(\bigcup_{i} A_{i}\right) = \bigcup_{i} T(A_{i}) \quad \text{and} \quad T^{-1}\left(\bigcup_{i} B_{i}\right) = \bigcup_{i} T^{-1}(B_{i})$$
$$T\left(\bigcap_{i} A_{i}\right) = \bigcap_{i} T(A_{i}) \quad \text{and} \quad T^{-1}\left(\bigcap_{i} B_{i}\right) = \bigcap_{i} T^{-1}(B_{i})$$
$$T\left(A^{c}\right) = \left(T\left(A\right)\right)^{c} \quad \text{and} \quad T^{-1}\left(B^{c}\right) = \left(T^{-1}\left(B\right)\right)^{c}$$
$$T^{-1}\left(T(A)\right) = A \quad \text{and} \quad T\left(T^{-1}(B)\right) = B$$

Provide counterexamples for each of the false assertions.

*(1.3) Each x in [0, 1) has a unique binary expansion $x = \sum_{k \in \mathbb{N}} x_k/2^k$, with $x_k \in \{0, 1\}$, provided we exclude the possibility that $x_k = 1$ for all k large enough. (So, for example, we choose for 1/2 the expansion with $x_1 = 1$ and $x_k = 0$ for $k \ge 2$ rather than the expansion with $x_1 = 0$ and $x_k = 1$ for all $k \ge 2$.) Define a map T from [0, 1) into $\Omega = \{0, 1\}^{\mathbb{N}}$ by $Tx = (x_1, x_2, ...)$.

For each k in \mathbb{N} and each subset B of $\{0, 1\}^k$ define the "cylinder set with base B" to be

$$B = \{\omega \in \Omega : (\omega_1, \ldots, \omega_k) \in B\}$$

Write \mathcal{E} for the collection of all such cylinder subsets of Ω . (That is, \mathcal{E} consists of all \widetilde{B} as k ranges over \mathbb{N} and B ranges over all subsets of $\{0, 1\}^k$.) Define $\mathcal{F} = \sigma(\mathcal{E})$.

- (i) Show that $\{x \in [0, 1) : x_k = 1\}$ is a finite union of disjoint intervals.
- (ii) Show that $T^{-1}\widetilde{B} \in \mathcal{B}[0, 1)$ for each cylinder set \widetilde{B} . Hint: Consider first the case where B consists of a single point in $\{0, 1\}^k$. Don't get carried away with notation.
- (iii) Deduce that T is $\mathcal{B}[0, 1) \setminus \mathcal{F}$ -measurable.
- (iv) Let \mathfrak{m} denote Lebesgue measure on $\mathfrak{B}[0, 1)$. Define \mathbb{P} on \mathfrak{F} by $\mathbb{P}F = \mathfrak{m}(T^{-1}F)$. Show that \mathbb{P} is a probability measure.
- (v) For each cylinder set \widetilde{B} with base B in $\{0, 1\}^k$, show that $\mathbb{P}\widetilde{B} = ($ number of points in $B)/2^k$.
- (1.4) The set $\overline{\mathbb{R}} = \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$ is called the *extended real line*. Write \mathcal{A} for the sigma-field on $\overline{\mathbb{R}}$ generated by $\mathcal{B}(\mathbb{R})$ together with the two singleton sets $\{-\infty\}$ and $\{\infty\}$. Show that \mathcal{A} is also generated by $\mathcal{E} = \{[-\infty, t] : t \in \mathbb{R}\}$.