Throughout the sheet let $(\Omega, \mathcal{F}, \mathbb{P})$ be a fixed probability space.

- *(10.1) Let τ_1 and τ_2 be stopping times for a filtration $\{\mathcal{F}_n : n \in \mathbb{N}_0\}$.
 - (i) Show that $\mathfrak{F}_{\tau_1 \wedge \tau_2} = \mathfrak{F}_{\tau_1} \cap \mathfrak{F}_{\tau_2}$.
 - (ii) Show that $\mathfrak{F}_{\tau_1 \vee \tau_2} = \sigma(\mathfrak{F}_{\tau_1} \cup \mathfrak{F}_{\tau_2})$. Hint: Show that each set of the form $F_{\tau_1 \vee \tau_2} = i$ with $F \in \mathfrak{F}_i$ can be written as a union of two sets, one in \mathfrak{F}_{τ_1} , the other in \mathfrak{F}_{τ_2} .
- (10.2) Let $\{(Z_n, \mathcal{F}_n) : n \in\}$ be a submartingale and τ be a stopping time. Show that $\{(Z_{\tau \wedge n}, \mathcal{F}_n) : n \in\}$ is also a submartingale. Hint: For F in \mathcal{F}_{n-1} , consider separately the contributions to $\mathbb{P}Z_{n \wedge \tau}F$ and $\mathbb{P}Z_{(n-1)\wedge \tau}F$ from the regions $\{\tau \leq n-1\}$ and $\{\tau \geq n\}$.
- (10.3) Suppose $\{Z_n : n \in \mathbb{N}_0\}$ are random variables on Ω . Define a filtration by $\mathcal{F}_n = \sigma\{Z_i : i \leq n\}$ for each $n \in \mathbb{N}_0$. Define $\mathcal{F}_{\infty} = \sigma\{Z_i : i \in \mathbb{N}_0\} = \sigma(\bigcup_{n \in \mathbb{N}_0} \mathcal{F}_n)$. Suppose τ is a stopping time for the filtration. Define $X_i = Z_{\tau \wedge i}$ and $\mathcal{G}_n = \sigma\{X_i : i \leq n\}$ and $\mathcal{G}_{\infty} = \sigma\{X_i : i \in \mathbb{N}_0\}$. Show that $\mathcal{F}_{\tau} = \mathcal{G}$ by the following steps.

As a convenient abbreviation, write W_n for the random vector (Z_0, Z_1, \ldots, Z_n) and W_∞ for $\mathbb{R}^{\mathbb{N}_0}$ random element (Z_0, Z_1, \ldots) . Write Y_n and Y_∞ for the analogous variables defined from the X_i 's.

- (i) Show that X_i is \mathcal{F}_{τ} -measurable. Hint: You may assume the result proved at the bottom of UGMTP page 143. Deduce that $\mathcal{G}_{\infty} \subseteq \mathcal{F}_{\tau}$.
- (ii) Explain why there exist sets $A_i \in \mathcal{B}(\mathbb{R}^{i+1})$ for which $\{\tau = i\} = \{W_i \in A_i\}$ for each $i \in \mathbb{N}_0$.
- (iii) Use the result from the next Problem on this Sheet to explain why there exists a set $A_{\infty} \in \mathcal{B}(\mathbb{R}^{\mathbb{N}_0})$ such that $\{\tau = \infty\} = \{W_{\infty} \in A_{\infty}\}.$
- (iv) Suppose $F \in \mathcal{F}_{\tau}$. For each k in \mathbb{N}_0 , explain why $F\{\tau = k\} = \{W_k \in B_k\}$ for some $B_k \in \mathcal{B}(\mathbb{R}^{k+1})$.
- (v) For each k in \mathbb{N}_0 , show that $\{\tau \ge k\} \in \mathcal{G}_{k-1}$. Hint for k = 2: First show that $\{\tau \ge 2\}$ can also be written as $\{W_0 \notin A_0, W_1 \notin A_2\} \{\tau \ge 1\}$.
- (vi) For each k in \mathbb{N}_0 , show that

$$F\{\tau = k\} = \{W_k \in B_k, \ \tau \ge k\} = \{Y_k \in B_k, \ \tau \ge k\} \in \mathcal{G}_k.$$

- (vii) Show that $F\{\tau = \infty\} \in \mathcal{G}_{\infty}$.
- (viii) Deduce that $F \in \mathcal{G}_{\infty}$. Conclude that $\mathcal{F}_{\tau} \subseteq \mathcal{G}_{\infty}$.
- (10.4) Suppose $\psi_i : \mathcal{Y} \to \mathcal{Z}_i$ and \mathcal{Z}_i is equipped with a sigma-field \mathcal{C}_i , for each *i* in some index set \mathcal{I} . Define \mathcal{B} as the smallest sigma-field on \mathcal{Y} for which each ψ_i is $\mathcal{B} \setminus \mathcal{C}_i$ -measurable.
 - (i) Show that \mathcal{B} is generated by the collection of sets $\bigcup_{i \in \mathcal{I}} \mathcal{E}_i$, where $\mathcal{E}_i := \{\psi_i^{-1}(C) : C \in \mathcal{C}_i\}$.
 - (ii) Suppose $T : \Omega \to \mathcal{Y}$ and that \mathcal{F} is a sigma-field on Ω . Show that T is $\mathcal{F}\backslash\mathcal{B}$ -measurable if and only if $\psi_i \circ T$ is $\mathcal{F}\backslash\mathcal{C}_i$ -measurable for each $i \in \mathcal{I}$.
 - (iii) Specialize to the case where $\mathcal{I} = \mathbb{N}$ and $\mathcal{Y} = \mathbb{R}^{\mathbb{N}}$, with ψ_i as the *i*th coordinate map: if $x = (x_i : i \in \mathbb{N}) \in \mathbb{R}^{\mathbb{N}}$ then $\psi_i(x) = x_i$. Suppose $T(\omega) = (X_1(\omega), X_2(\omega), \ldots)$ for some sequence of $\mathcal{F} \setminus \mathcal{B}(\mathbb{R})$ -measurable real random variables X_1, X_2, \ldots Show that T is $\mathcal{F} \setminus \mathcal{B}$ -measurable.
 - (iv) Show that $\sigma(T) = \{T^{-1}(B) : B \in \mathcal{B}\}.$
 - (v) Show that $\sigma(T) = \mathcal{F}_{\infty}$, the smallest sigma-field on Ω for which X_i is $\mathcal{F}_{\infty} \setminus \mathcal{B}(\mathbb{R})$ -measurable for each $i \in \mathbb{N}$.
 - (vi) Show that the elements of $\mathcal{M}^+(\Omega, \mathcal{F}_{\infty})$ are precisely those functions of the form $g(T(\omega))$ for some $g \in \mathcal{M}^+(\mathbb{R}^{\mathbb{N}}, \mathcal{B})$. Hint: Start with the bounded random variables.