Statistics 330/600 2008: Sheet 11

- *(11.1) (upcrossing for subMG) UGMTP Problem 6.11.
- (11.2) (backwards Tchebychev) UGMTP Problem 6.7. Hint: Show that the process $M_n := X_n^2 V_n$ is a martingale (for some suitable filtration).
- *(11.3) (facts about d(x, B) in a metric space) UGMTP Problem 7.3.
- (11.4) Let (\mathfrak{X}, d) be a metric space for which there exists a countable, dense subset \mathfrak{X}_0 . Show that the map $(x, y) \mapsto d(x, y)$ is $\mathfrak{B}(\mathfrak{X}) \otimes \mathfrak{B}(\mathfrak{X}) \setminus \mathfrak{B}(\mathbb{R})$ -measurable. Hint: Either show that $\mathfrak{B}(\mathfrak{X} \times \mathfrak{X}) = \mathfrak{B}(\mathfrak{X}) \otimes \mathfrak{B}(\mathfrak{X})$ or consider $\inf\{d(x, z) + d(z, y) : z \in \mathfrak{X}_0\}$.
- *(11.5) Suppose P, P_1, P_2, \ldots are probability measures on $\mathcal{B}(\mathbb{R})$ for which $P_n(-\infty, x] \to P(-\infty, x]$ for every x in some dense subset T of \mathbb{R} . Show that $P_n \rightsquigarrow P$ by the following steps.
 - (i) For each $\epsilon > 0$ show that there exist points $x_1 < x_2 < \ldots < x_k$ in T for which $\max_{i=2}^k |x_i x_{i-1}| < \epsilon$ and $P(-\infty, x_1] < \epsilon$ and $P(x_k, \infty) < \epsilon$.
 - (ii) Given $f \in BL(\mathbb{R})$, define a step function $f_k(x) := \sum_{i=2}^k f(x_i) \{x_{i-1} < x \le x_i\}$. Show that $P_n f_k \to P f_k$ for each k and that both $P | f f_k |$ and $\limsup_n P_n | f f_k |$ are suitably small.