Please attempt at least the starred problems.

- *(4.1) Suppose \mathcal{E}_i is a collection of subsets of \mathcal{X}_i with $\mathcal{X}_i \in \mathcal{E}_i$, for i = 1, 2. Show that $\sigma(\mathcal{E}_1 \times \mathcal{E}_2) = \sigma(\mathcal{E}_1) \otimes \sigma(\mathcal{E}_2)$, as sigma-fields on $\mathcal{X}_1 \times \mathcal{X}_2$.
- *(4.2) UGMTP Problem 4.16, parts (i) and (ii) only. Hint: Consider the sum of the indicator functions of the sets $\{(x, t) \in \mathbb{R}^2 : x \le t\}$ and $\{(x, t) \in \mathbb{R}^2 : x \ge t\}$. You may use the fact that $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ without proving it—see UGMTP Problem 4.6.
- *(4.3) Suppose \mathcal{A} is a sigma-field on a set \mathcal{X} and \mathcal{B} is a sigma-field on a set \mathcal{Y} . Suppose $\{\mu_i : i \in \mathbb{N}\}$ is a sequence of measures on \mathcal{A} .
 - (i) Show that the functional $\mu : \mathcal{M}^+(\mathcal{X}, \mathcal{A}) \to [0, \infty]$ defined by $\mu(f) = \sum_{i \in \mathbb{N}} \mu_i f$ corresponds to a countably additive measure on \mathcal{A} .
 - (ii) Suppose μ can be represented as a countable sum of measures as in (i), with each μ_i a finite measure (that is, $\mu_i \mathcal{X} < \infty$ for each *i*). Must μ be sigma-finite?
 - (iii) Suppose μ is the measure defined in (ii) and ν is a measure defined similarly from a countable set of finite measures $\{\nu_j : j \in \mathbb{N}\}$ on \mathcal{B} . Show that the Tonelli Theorem also works for μ and ν . That is, show that the assumptions of sigma-finiteness in UGMTP Theorem 4.25 can be relaxed.