Throughout the sheet let $(\Omega, \mathcal{F}, \mathbb{P})$ *be a fixed probability space.*

- *(5.1) Let X be a random variable on Ω . Show that $\{(\omega, s) \in \Omega \times \mathbb{R} : X(\omega) > s\} \in \mathcal{F} \otimes \mathcal{B}(\mathbb{R})$.
- *(5.2) Let $X_1, X_2...$, be independent random variables with $\mathbb{P}X_i = 0$ and $\mathbb{P}X_i^6 \leq C$ for each *i*, where *C* is a finite constant. Show that $\mathbb{P}(X_1 + ... + X_n)^6 \leq C_0 n^3$ for each *n*, where C_0 is a constant that depends only on *C*.
- *(5.3) Let \mathfrak{X} be a set equipped with a *countably generated* sigma-field \mathcal{A} . That is, $\mathcal{A} = \sigma(\mathcal{E})$ for some countable collection of sets $\mathcal{E} = \{E_i : i \in \mathbb{N}\}$. Suppose also that $\{x\} \in \mathcal{A}$ for each x in \mathfrak{X} . [Note that there is no loss of generality in assuming \mathcal{E} to be stable under complements, for we could replace \mathcal{E} by $\mathcal{E} \cup \{E^c : E \in \mathcal{E}\}$.] Suppose $X : \Omega \to \mathfrak{X}$ is an $\mathfrak{F} \setminus \mathcal{A}$ -measurable map that is independent of itself. Show that there exists

some $x_0 \in \mathcal{X}$ for which $X = x_0$ almost surely [P] by the following steps.

(i) For each pair of points $x_1 \neq x_2$ in \mathcal{X} , show that there must exists some E_i for which $x_1 \in E_i$, $x_2 \in E_i^c$. Hint: If the two points could not be separated in this way, consider

 $\{A \in \mathcal{A} : \text{either } \{x_1, x_2\} \subseteq A \text{ or } \{x_1, x_2\} \subseteq A^c\}$

- (ii) For each *i*, show that $\mathbb{P}\{X \in E_i\}$ is either zero or one. Hint: Consider $\mathbb{P}\{X \in E_i, X \in E_i^c\}$.
- (iii) Define A_0 to be the intersection of all those E_i for which $\mathbb{P}\{X \in E_i\} = 1$. Show that $\mathbb{P}\{X \in A_0\} = 1$.
- (iv) Show that A_0 is a singleton set. Hint: Use part (i).
- (5.4) (Rio's inequality) Let A and B be two sub-sigma-fields of \mathcal{F} . Define

$$\alpha := \sup\{|\mathbb{P}(AB) - (\mathbb{P}A)(\mathbb{P}B)| : A \in \mathcal{A}, B \in \mathcal{B}\}.$$

Suppose X is nonnegative and A-measurable, and Y is nonnegative and B-measurable. Write q_X for the quantile function corresponding to the distribution of X and q_Y be the analogous quantile function for Y. Show that

$$|\operatorname{cov}(X, Y)| \leq \int_0^\alpha q_X(u)q_Y(u)\,du.$$

Hint: First show that |cov(X, Y)| is smaller than some double integral of min $(\alpha, \mathbb{P}\{X > x\}, \mathbb{P}\{Y > y\})$.