Statistics 330/600 2008: Sheet 6

Throughout the sheet let $(\Omega, \mathcal{F}, \mathbb{P})$ be a fixed probability space.

*(6.1) Let X_1, \ldots, X_n be independent random k-vectors (that is, $\mathcal{F} \setminus \mathcal{B}(\mathbb{R}^k)$ measurable maps into \mathbb{R}^k), each with a symmetric distribution (that is, X_i has the same distribution as $-X_i$). Define $S_i = X_1 + \ldots + X_i$. For a fixed $\lambda > 0$, show that $\mathbb{P}\{\max_{i \le n} |S_i| > \lambda\} \le 2\mathbb{P}\{|S_n| > \lambda\}$, where $|\cdot|$ denotes the usual Euclidean length. Hint: Define $A_i = \{|S_i| > \lambda, |S_j| \le \lambda$ for all $j < i\}$ and $T_i = S_n - S_i$. Show that

 $\mathbb{P}A_i \leq \mathbb{P}A_i \left(\{ |S_i + T_i| > \lambda \} + \{ |S_i - T_i| > \lambda \} \right) = 2\mathbb{P}A_i \{ |S_n| > \lambda \}.$

- (6.2) Theorem 4.4 of UGMTP established a SLLN for independent random variables X_1, X_2, \ldots with $\mathbb{P}X_i = 0$ and $\sup_i \mathbb{P}X_i^4 < \infty$. Show the the SLLN also holds if we relax the fourth moment assumption to $\mathbb{P}X_i^4 = O(i^{\alpha})$ for some $\alpha < 1$.
- *(6.3) Suppose T is a function from a set \mathcal{X} into a set \mathcal{Y} , which is equipped with a σ -field \mathcal{B} . Recall that $\sigma(T) := \{T^{-1}B : B \in \mathcal{B}\}$ is the smallest sigma-field on \mathcal{X} for which T is $\sigma(T) \setminus \mathcal{B}$ -measurable. Show that to each f in $\mathcal{M}^+(\mathcal{X}, \sigma(T))$ there exists a $\mathcal{B} \setminus \mathcal{B}[0, \infty]$ -measurable function g from \mathcal{Y} into $[0, \infty]$ such that f(x) = g(T(x)), for all x in \mathcal{X} , by following these steps.
 - (i) Consider the case where $f \in \mathcal{M}^+_{\text{simple}}(\mathcal{X}, \sigma(T))$.
 - (ii) Suppose $f_n = g_n \circ T$ is a sequence in $\mathcal{M}^+_{\text{simple}}(\mathcal{X}, \sigma(T))$ that increases pointwise to f. Define $g(y) = \limsup g_n(y)$ for each y in \mathcal{Y} . Show that g has the desired property.
 - (iii) In part (ii), why can't we assume that $\lim g_n(y)$ exists for each y?
- *(6.4) Let \mathcal{A} be a sigma-field on a set \mathcal{X} and \mathcal{B} be a sigma-field on a set \mathcal{Y} . Let T be an $\mathcal{A}\setminus\mathcal{B}$ -measurable map from \mathcal{X} into \mathcal{Y} . Suppose ν and μ are finite measures on \mathcal{A} , with $\nu \ll \mu$. (That is, if $A \in \mathcal{A}$ and $\mu A = 0$ then $\nu A = 0$.)
 - (i) Define μ_T to be the image of μ under T and ν_T to be the image of ν under T Show that $\nu_T \ll \mu_T$. Write g for the density $d(T\nu)/d(T\mu)$.
 - (ii) Let v_0 and μ_0 denote the restrictions of the two measures to the sigma-field $\sigma(T)$. Show that $g \circ T$ is a version of the density $dv_0/d\mu_0$. Hint: Look at the previous Problem.

Correction to Homework Problem 5.4: The inequality should be

$$|\operatorname{cov}(X,Y)| \le \int_0^\alpha q_X(1-u)q_Y(1-u)\,du.$$