Statistics 330/600 2008: Sheet 7

- (7.1) UGMTP Problem 3.13.
- *(7.2) Let P and Q be probability measures defined on the same sigma-field \mathcal{F} . A randomized test is a measurable function f with $0 \le f \le 1$. (For observation ω , the value $f(\omega)$ gives the probability of rejecting the "hypothesis" P.) For fixed constants $\alpha > 0$ and $\beta > 0$, find the test that minimizes $\alpha Pf + (1 f)$.
- *(7.3) Read UGMTP page 61 for the definition of Hellinger distance. Suppose P_1 and Q_1 are probability measures on (X_1, A_1) and P_2 and Q_2 are probability measures on (X_2, A_2) . Show that

$$H^{2}(P_{1} \otimes P_{2}, Q_{1} \otimes Q_{2}) = 2 - 2 \prod_{i=1}^{2} \left(1 - \frac{1}{2} H^{2}(P_{i}, Q_{i}) \right) \le H^{2}(P_{1}, Q_{1}) + H^{2}(P_{2}, Q_{2}).$$

Hint: Work with densities with respect to some product measure $\lambda_1 \otimes \lambda_2$.

(7.4) Let $\{\mathbb{P}_{\theta} : \theta \in \Theta\}$ be a set of probability measures on (Ω, \mathcal{F}) , where the index set Θ is a subset of \mathbb{R} . Suppose T is an $\mathcal{F}\setminus \mathcal{B}(\mathbb{R})$ -measurable function with the property that: for some fixed $\epsilon > 0$ and $\eta > 0$,

$$\mathbb{P}_{\theta}\{\omega : |T(\omega) - \theta| > \epsilon\} \le \eta \quad \text{for each } \theta \in \Theta.$$

- (*i*) Suppose $\theta_0, \theta_1 \in \Theta$ are such that $|\theta_0 \theta_1| > 2\epsilon$. Show that the total variation distance $d_{\text{TV}}(\mathbb{P}_{\theta_0}, \mathbb{P}_{\theta_1})$ is at least $1 2\eta$. Hint: Consider $\mathbb{P}_{\theta_i}A$ where $A = \{|T \theta_0| \le \epsilon\}$.
- (ii) Suppose Θ_0 and Θ_1 are two subsets of Θ for which $|\theta_0 \theta_1| > 2\epsilon$ for all $\theta_0 \in \Theta_0$ and $\theta_1 \in \Theta_1$. Show that $d_{\text{TV}}(\mathbb{P}, \mathbb{Q}) \ge 1 - 2\eta$ for each probability measure \mathbb{P} expressible as a convex combination of measures from $\{\mathbb{P}_{\theta} : \theta \in \Theta_0\}$ and each probability measure \mathbb{Q} expressible as a convex combination of measures from $\{\mathbb{P}_{\theta} : \theta \in \Theta_1\}$.