- *(8.1) [conditional Jensen] UGMTP Problem 5.13.
- *(8.2) [See the second Remark on UGMTP page 127 for the significance of this Problem.] Let \mathbb{P} be Lebesgue measure on \mathfrak{F} , the Borel sigma-field of [0,1]. Let \mathfrak{G} denote the sigma-field generated by all the singletons in [0,1].
 - (i) Show that each set in G is either countable or its complement is countable, and hence it has probability either zero or one.
 - (ii) For each \mathcal{G} -measurable random variable Y show that there exists a constant C_Y such that $Y = C_Y$ almost surely.
 - (iii) Deduce that $\mathbb{P}_{\mathfrak{S}}(X) = \mathbb{P}X$ almost surely, for each X in $\mathfrak{M}^+(\mathfrak{F})$.
 - (iv) Show for each Borel measurable X that $X(\omega)$ is uniquely determined once we know the values of all \mathcal{G} -measurable random variables.
- (8.3) [This problem gives a version of the Neyman factorization theorem using Kolmogorov conditional expectations. The method of proof is analogous to the method explained in class for the case where conditional distributions exist.] Suppose \mathbb{P} and \mathbb{P}_{θ} , for $\theta \in \Theta$, are probability measures defined on a sigma-field \mathfrak{F} , for some index set Θ . Suppose also that \mathfrak{G} is a sub-sigma-field of \mathfrak{F} and that there exist versions of densities

$$\frac{d\mathbb{P}_{\theta}}{d\mathbb{P}} = g_{\theta}(\omega)h(\omega) \qquad \text{with } g_{\theta} \in \mathcal{M}^{+}(\mathfrak{G}) \text{ for each } \theta$$

for a fixed $h \in \mathcal{M}^+(\mathfrak{F})$ that doesn't depend on θ .

- (i) Define H to be a version of $\mathbb{P}_{\mathcal{G}}h$. [That is, choose one H from the \mathbb{P} -equivalence class of possibilities.] Show that $\mathbb{P}_{\theta}\{H=0\}=0=\mathbb{P}_{\theta}\{H=\infty\}$ for each θ .
- (ii) For each X in $\mathcal{M}^+(\mathfrak{F})$, show that there exists a version of the conditional expectation $\mathbb{P}_{\theta}(X \mid \mathfrak{G})$ that doesn't depend on θ :

$$\mathbb{P}_{\theta}(X \mid \mathcal{G}) = \frac{\mathbb{P}_{\mathcal{G}}(Xh)}{H} \{ 0 < H < \infty \} \quad \text{a.e. } [\mathbb{P}_{\theta}] \text{ for every } \theta.$$

*(8.4) Suppose $X \in \mathcal{L}^2(\Omega, \mathfrak{F}, \mathbb{P})$ and \mathfrak{G} is a sub-sigma-field of \mathfrak{F} . Let $X_{\mathfrak{G}}$ be a version of $\mathbb{P}_{\mathfrak{G}}X$. Define $\operatorname{var}_{\mathfrak{G}}(X)$ to equal $\mathbb{P}_{\mathfrak{G}}(X - X_{\mathfrak{G}})^2$. Show that

$$\operatorname{var}(X) = \mathbb{P}(\operatorname{var}_{\mathfrak{G}} X) + \operatorname{var}(\mathbb{P}_{\mathfrak{G}} X)$$