*(8.1) [conditional Jensen] UGMTTP Problem 5.12.

*(8.2) [See the second Remark on UGMTTP page 127 for the significance of this Problem.] Let \mathbb{P} be Lebsegue measure on \mathcal{F}, the Borel sigma-field of $[0, 1]$. Let \mathcal{G} denote the sigma-field generated by all the singletons in $[0, 1]$.

(i) Show that each set in \mathcal{G} is either countable or its complement is countable, and hence it has probability either zero or one.

(ii) For each \mathcal{G}-measurable random variable Y show that there exists a constant C_Y such that $Y = C_Y$ almost surely.

(iii) Deduce that $\mathbb{P}_G(X) = \mathbb{P}X$ almost surely, for each X in $\mathcal{M}^+(\mathcal{F})$.

(iv) Show for each Borel measurable X that $X(\omega)$ is uniquely determined once we know the values of all \mathcal{G}-measurable random variables.

(8.3) [This problem gives a version of the Neyman factorization theorem using Kolmogorov conditional expectations. The method of proof is analogous to the method explained in class for the case where conditional distributions exist.] Suppose \mathbb{P} and \mathbb{P}_θ, for $\theta \in \Theta$, are probability measures defined on a sigma-field \mathcal{F}, for some index set Θ. Suppose also that \mathcal{G} is a sub-sigma-field of \mathcal{F} and that there exist versions of densities

$$ \frac{d\mathbb{P}_\theta}{d\mathbb{P}} = g_\theta(\omega) h(\omega) \quad \text{with } g_\theta \in \mathcal{M}^+(\mathcal{G}) \text{ for each } \theta $$

for a fixed $h \in \mathcal{M}^+(\mathcal{F})$ that doesn’t depend on θ.

(i) Define H to be a version of $\mathbb{P}_G h$. [That is, choose one H from the \mathbb{P}-equivalence class of possibilities.] Show that $\mathbb{P}_\theta\{H = 0\} = 0 = \mathbb{P}_\theta\{H = \infty\}$ for each θ.

(ii) For each X in $\mathcal{M}^+(\mathcal{F})$, show that there exists a version of the conditional expectation $\mathbb{P}_\theta(X \mid \mathcal{G})$ that doesn’t depend on θ:

$$ \mathbb{P}_\theta(X \mid \mathcal{G}) = \frac{\mathbb{P}_G(XH)}{H} \{0 < H < \infty\} \quad \text{a.e. } [\mathbb{P}_\theta] \text{ for every } \theta. $$

*(8.4) Suppose $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G} is a sub-sigma-field of \mathcal{F}. Let X_G be a version of $\mathbb{P}_G X$. Define $\text{var}_G(X)$ to equal $\mathbb{P}_G(X - X_G)^2$. Show that

$$ \text{var}(X) = \mathbb{P}(\text{var}_G X) + \text{var}(\mathbb{P}_G X). $$