- *(9.1) Suppose $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $Y = \mathbb{P}_{\mathcal{G}} X$ for some sub-sigma-field \mathcal{G} of \mathcal{F} . Suppose W is a \mathcal{G} -measurable random variable for which $XW \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$.
 - (i) Show that $YW \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathbb{P}(XW) = \mathbb{P}(YW)$. Hint: Consider X^{\pm} and W^{\pm} . Note that Y is defined to equal $\mathbb{P}_{\mathcal{G}}X^+ \mathbb{P}_{\mathcal{G}}X^-$ almost surely. [By the way: Why is there no $\infty \infty$ problem in the definition of Y?]
 - (ii) Show that $Y \ge 0$ almost surely if $\mathbb{P}(XW) \ge 0$ for every bounded, \mathcal{G} -measurable, nonnegative W.
- *(9.2) Suppose $\{\xi_i : i \in \mathbb{N}\}$ is an exchangeable sequence of random variables, each taking values in $\{0, 1\}$. That is, for each *n* and each $t = (t_1, \ldots, t_n) \in \{0, 1\}^n$, the probability $\mathbb{P}\{\xi_1 = t_1, \ldots, \xi_n = t_n\}$ depends only on $\sum_{i \le n} t_i$. Define $S_n = \sum_{i \le n} \xi_i$. Let $\mathcal{S} = \sigma(S_n)$.
 - (i) Show that $\mathbb{P}_{\mathbb{S}}\xi_1 = \ldots = \mathbb{P}_{\mathbb{S}}\xi_n$ almost surely.
 - (ii) Deduce for each $m \le n$ that $\mathbb{P}_{\mathbb{S}}(S_m/m) = S_n/n$ almost surely.
- (9.3) (generalized Polya urn) Suppose an urn initially contains r_0 red balls and $b_0 = N_0 r_0$ black balls. At step *n* a ball is selected at random from the urn then thrown back. Let $\xi_n = 1$ if the ball is red, $\xi_n = 0$ otherwise. Another d_n balls of the same color, where $d_n \ge 0$ is a random integer that can depend on the outcomes of the first n 1 draws, are then added to the urn.

Let $R_n = r_0 + \sum_{i \le n} \xi_i d_i$ denote the number of red balls in the urn, and B_n denote the number of black balls, after completion of the *n*th step. The total number of balls in the urn is $N_n = R_n + B_n = N_0 + \sum_{i \le n} d_i$.

- (i) Show that R_n/N_n is a martingale with respect to a suitable filtration.
- (ii) Is R_n/N_n also a martingale if we allow d_n to take negative values, subject to the constraint $d_n \ge \max(R_{n-1}, B_{n-1})$?
- (9.4) [slightly difficult problem] Suppose μ and \mathbb{P} are probability measures on a *countably generated* sigmafield \mathcal{F}_{∞} on a set Ω . That is, $\mathcal{F}_{\infty} = \sigma\{F_i : i \in \mathbb{N}\}$. Let π_n denote the partition of Ω generated by the sets F_1, \ldots, F_n . (That is, each nonempty member of π_n is of the form $\bigcap_{i \leq n} A_i$ with $A_i = F_i$ or $A_i = F_i^c$.) Define

$$\begin{aligned} X_n(\omega) &= \sum_{B \in \pi_n} \{ \omega \in B, \mathbb{P}B > 0 \} \frac{\mu B}{\mathbb{P}B} \\ Z_n(\omega) &= \sum_{B \in \pi_n} \{ \omega \in B, \lambda B > 0 \} \frac{\mu B}{\lambda B} \qquad \text{where } \lambda = \frac{1}{2}(\mu + \mathbb{P}). \end{aligned}$$

- (i) Define $\Omega_n = \bigcup \{B \in \pi_n : \mathbb{P}B > 0\}$. Show that $\mathbb{P}\Omega_n = 1$ for each *n*.
- (ii) Define $\mathcal{F}_n = \sigma(\pi_n) = \sigma\{F_i : i = 1, ..., n\}$. Show that $\{(X_n, \mathcal{F}_n) : n \in \mathbb{N}\}$ is a \mathbb{P} -supermartingale, which converges \mathbb{P} almost surely to some random variable X_{∞} .
- (iii) Show that $\{(Z_n, \mathcal{F}_n) : n \in \mathbb{N}\}$ is a λ -martingale, which converges λ almost surely to a random variable Z_{∞} . Show also that Z_{∞} is a version of the density $d\mu/d\lambda$.
- (iv) Show that there is an \mathcal{F}_{∞} -measurable subset Ω_0 of $\bigcap_{n \in \mathbb{N}} \Omega_n$ with $\mathbb{P}\Omega_0 = 1$ such that

$$X_n(\omega) \to X_\infty(\omega) < \infty$$
 and $\frac{2X_n(\omega)}{1 + X_n(\omega)} = Z_n(\omega)$ for each $\omega \in \Omega_0$.

(v) Deduce that

$$\frac{2X_{\infty}}{1+X_{\infty}}\Omega_0 = Z_{\infty}\Omega_0 \qquad \text{a.e. } [\lambda]$$

(vi) Deduce that

$$\mathbb{P}\frac{X_{\infty}\Omega_{0}F}{1+X_{\infty}} = \mu\frac{\Omega_{0}F}{1+X_{\infty}} \quad \text{for each } F \in \mathfrak{F}_{\infty}.$$

(vii) Deduce that

$$\mathbb{P}X_{\infty}\Omega_0 f = \mu\Omega_0 f \quad \text{for each } f \in \mathcal{M}^+(\mathcal{F}_{\infty}).$$

(viii) Conclude that X_{∞} is a version of the density $d\mu_0/d\mathbb{P}$, where μ_0 is the part of μ that is absolutely continuous with respect to \mathbb{P} .