Statistics 330b/600b, spring 2009 Homework # 1 Due: Thursday 22 January

Please attempt at least the starred problems.

*[1] Suppose T maps a set \mathfrak{X} into a set \mathfrak{Y} . For $B \subseteq \mathfrak{Y}$ define $T^{-1}B := \{x \in \mathfrak{X} : T(x) \in B\}$. For $A \subseteq \mathfrak{X}$ define $T(A) := \{T(x) : x \in A\}$. Some of the following assertions are true in general and some are false.

$T\left(\cup_{i} A_{i}\right) = \cup_{i} T(A_{i})$	and	$T^{-1}\left(\cup_i B_i\right) = \cup_i T^{-1}(B_i)$
$T\left(\cap_{i} A_{i}\right) = \cap_{i} T(A_{i})$	and	$T^{-1}\left(\cap_{i} B_{i}\right) = \cap_{i} T^{-1}(B_{i})$
$T\left(A^{c}\right) = \left(T\left(A\right)\right)^{c}$	and	$T^{-1}\left(B^{c}\right) = \left(T^{-1}\left(B\right)\right)^{c}$
$T^{-1}\left(T(A)\right) = A$	and	$T\left(T^{-1}(B)\right) = B$

Provide counterexamples for each of the false assertions.

*[2] Let $\Omega = \{0,1\}^{\mathbb{N}}$. For each n in \mathbb{N} let \mathcal{E}_n denote the collection subsets of Ω of the form $A(a) = \{\omega \in \Omega : \omega_i = a_i \text{ for } i = 1, ..., n\}$, where $a = (a_1, ..., a_n)$ ranges over the 2^n elements of $\{0,1\}^n$. Let $\mathcal{E} = \bigcup_{n \in \mathbb{N}} \mathcal{E}_n$. Write \mathcal{F} for the generated sigma-field, $\mathcal{F} = \sigma(\mathcal{E})$. And let \mathbf{m} denote Lebesgue measure on $\mathcal{B}(0,1]$.

For each n in \mathbb{N} define a function $X_n : (0,1] \to \{0,1\}$ by putting $X_n(u) = 1$ when u lies in the union of the 2^{n-1} intervals $((k-1)/2^n, k/2^n]$, for $k = 2, 4, 6, \ldots, 2^n$, and $X_n(u) = 0$ otherwise. Define a function $T : (0,1] \to \Omega$ by letting T(u) have nth coordinate $X_n(u)$.

- (i) Show that T is $\mathcal{B}(0,] \setminus \mathcal{F}$ -measurable. Hint: No need to reprove the result from Example 2.7, which I discussed in class.
- (ii) Let $\mathbb{P} = T(\mathbf{m})$, the image of \mathbf{m} under T. Show that \mathbb{P} is a probability measure on \mathcal{F} for which $\mathbb{P}E = 2^{-n}$ for each E in \mathcal{E}_n .
- [3] Suppose T is a function from a set \mathcal{X} into a set \mathcal{Y} , which is equipped with a σ -field \mathcal{B} . Recall that $\sigma(T) := \{T^{-1}B : B \in \mathcal{B}\}$ is the smallest sigma-field on \mathcal{X} for which T is $\sigma(T) \setminus \mathcal{B}$ -measurable. Show that to each f in $\mathcal{M}^+(\mathcal{X}, \sigma(T))$ there exists a $\mathcal{B} \setminus \mathcal{B}[0, \infty]$ -measurable function g from \mathcal{Y} into $[0, \infty]$ such that f(x) = g(T(x)), for all x in \mathcal{X} , by following these steps.
 - (i) Consider the case where $f \in \mathcal{M}^+_{\text{simple}}(\mathfrak{X}, \sigma(T))$.
 - (ii) Suppose $f_n = g_n \circ T$ is a sequence in $\mathcal{M}^+_{\text{simple}}(\mathfrak{X}, \sigma(T))$ that increases pointwise to f. Define $g(y) = \limsup g_n(y)$ for each y in \mathcal{Y} . Show that g has the desired property.
 - (iii) In part (ii), why can't we assume that $\lim g_n(y)$ exists for each y?
- [4] Suppose a set \mathcal{E} of subsets of \mathcal{X} cannot separate a particular pair of points x, y, that is, for every E in \mathcal{E} , either $\{x, y\} \subseteq E$ or $\{x, y\} \subseteq E^c$. Show that $\sigma(\mathcal{E})$ also cannot separate the pair.