Statistics 330b/600b, spring 2009 Homework # 3 Due: Thursday 5 February

Please attempt at least the starred problems.

- *[1] A nonempty collection of subsets of a set \mathcal{X} is called a *field* on \mathcal{X} if it is stable under finite unions, finite intersections, and complements. Suppose μ is a finite measure on a sigma-field $\mathcal{A} = \sigma(\mathcal{E})$ for some field \mathcal{E} . Show that, for each $A \in \mathcal{A}$ and each $\epsilon > 0$, there exists a set $E \in \mathcal{E}$ for which $\mu |A - E| < \epsilon$.
- *[2] Suppose μ and ν are finite measures on a sigma-field $\mathcal{A} = \sigma(\mathcal{E})$ for some field \mathcal{E} . Suppose also that for each $\epsilon > 0$ there exists a $\delta > 0$ such $\nu E < \epsilon$ for every set $E \in \mathcal{E}$ for which $\mu E < \delta$. Show that $\nu \ll \mu$. Hint: Consider an A for which $\mu A = 0$. Use the previous Problem to find an E in \mathcal{E} for which $(\mu + \nu)|A - E| < \min(\delta, \epsilon)$.
- *[3] Let *P* and *Q* be probability measures defined on the same sigma-field \mathcal{F} . A *randomized test* is a measurable function *f* with $0 \le f \le 1$. (For observation ω , the value $f(\omega)$ gives the probability of rejecting the "hypothesis" *P*.) For fixed constants $\alpha > 0$ and $\beta > 0$, find the test that minimizes $\alpha Pf + \beta Q(1-f)$. Hint: Suppose $dP/d\mu = p(\omega)$ and $dQ/d\mu = q(\omega)$. How would you minimize $\alpha p(\omega)f(\omega) + \beta q(\omega)(1-f(\omega))$ for a fixed ω ?
- [4] (completeness of \mathcal{L}^{Ψ}). UGMTP Problem 2.23.