Please attempt at least the starred problems.

1 UGMTP Problem 6.6. Notice that the stopping times might take the value $+\infty$. You will need suitable limiting arguments after invoking the Stopping Time Lemma with $\sigma \wedge N$ and $\tau \wedge N$, for a finite N.

2 Let (Ω, \mathcal{F}, P) be a probability space with \mathcal{F} countably generated. In class you saw that there is a filtration $\{\mathcal{F}_n : n \in \mathbb{N}_0\}$ with each \mathcal{F}_n generated by a finite set A_n of atoms and such that $\mathcal{F} = \sigma(\bigcup_{n \in \mathbb{N}_0} \mathcal{F}_n)$.

Suppose μ is another probability measure on \mathcal{F}, not necessarily dominated by P. Define $Q = \frac{1}{2}(P + \mu)$ and

$$X_n(\omega) = \sum_{A \in A_n} \{QA > 0\} \frac{\mu A}{QA} \{\omega \in A\}$$

$$Z_n(\omega) = \sum_{A \in A_n} \{PA > 0\} \frac{\mu A}{PA} \{\omega \in A\}.$$

From the arguments presented in class, you know that $\{(X_n, \mathcal{F}_n) : n \in \mathbb{N}_0\}$ is a Q-martingale. Also there exists a random variable X_∞ with $0 \leq X_\infty(\omega) \leq 2$ for every ω such $X_n \rightarrow X_\infty$ a.e. $[Q]$ and $Q|X_n - X_\infty| \rightarrow 0$. Moreover, X_∞ is (a version of) the density $d\mu/dQ$.

(i) Show that $\{(Z_n, \mathcal{F}_n) : n \in \mathbb{N}_0\}$ is a nonnegative P-supermartingale. Deduce that there exists a random variable Z_∞ with $0 \leq Z_\infty(\omega) < \infty$ for every ω such that $Z_n \rightarrow Z_\infty$ a.e. $[P]$.

(ii) Define $\Omega_n = \bigcup\{A \in A_n : PA > 0\}$ and $\Omega' = \cap_{n \in \mathbb{N}_0} \Omega_n$. Show that $P\Omega' = 1$ and

$$X_n(\omega) = \frac{2Z_n(\omega)}{1 + Z_n(\omega)} \quad \text{for all } \omega \text{ in } \Omega'.$$

(iii) Deduce that there is a subset Ω'' of Ω' with $P\Omega'' = 1$ for which

$$X_\infty(\omega) = \frac{2Z_\infty(\omega)}{1 + Z_\infty(\omega)} \quad \text{for all } \omega \text{ in } \Omega''.$$

(iv) For each f in $M^+(\omega, \mathcal{F})$ show that

$$\mu(\Omega'' f) = P(\Omega'' f Z_\infty).$$

Hint: If you are planning on any subtractions it might be safer to start with f bounded.

(v) Conclude that Z_∞ is (a version of) the density $d\mu_0/dP$, where μ_0 is the part of μ that is dominated by P. That is, if μ_0 is the restriction of μ to Ω'' and μ_1 is the restriction of μ to $(\Omega'')^c$ then μ_1 and P are mutually singular and $\mu_0 \ll P$ with density Z_∞. You might even want to take $Z_\infty(\omega) = 0$ if $\omega \in (\Omega'')^c$. [Compare with the Lebesgue decomposition of μ.]