
Appendix A

Measures and integrals

SECTION 1 introduces a method for constructing a measure by inner approximation,
starting from a set function defined on a lattice of sets.

SECTION 2 defines a “tightness” property, which ensures that a set function has an extension
to a finitely additive measure on a field determined by the class of approximating sets.

SECTION 3 defines a “sigma-smoothness” property, which ensures that a tight set function
has an extension to a countably additive measure on a sigma-field.

SECTION 4 shows how to extend a tight, sigma-smooth set function from a lattice to its
closure under countable intersections.

SECTION 5 constructs Lebesgue measure on Euclidean space.
SECTION 6 proves a general form of the Riesz representation theorem, which expresses

linear functionals on cones of functions as integrals with respect to countably additive
measures.

1. Measures and inner measure

Recall the definition of a countably additive measure on sigma-field. A sigma-field
A on a set X is a class of subsets of X with the following properties.

(SF1) The empty set ∅ and the whole space X both belong to A.

(SF2) If A belongs to A then so does its complement Ac.

(SF3) For countable {Ai : i ∈ N} ⊆ A, both ∪i Ai and ∩i Ai are also in A.

A function µ defined on the sigma-field A is called a countably additive (nonnegative)
measure if it has the following properties.

(M1) µ∅ = 0 ≤ µA ≤ ∞ for each A in A.

(M2) µ (∪i Ai ) = ∑
i µAi for sequences {Ai : i ∈ N} of pairwise disjoint sets from A.

If property SF3 is weakened to require stability only under finite unions and
intersections, the class is called a field. If property M2 is weakened to hold only
for disjoint unions of finitely many sets from A, the set function is called a finitely
additive measure.

Where do measures come from? Typically one starts from a nonnegative
real-valued set-function µ defined on a small class of sets K0, then extends to a
sigma-field A containing K0. One must at least assume “measure-like” properties
for µ on K0 if such an extension is to be possible. At a bare minimum,
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(M0) µ is an increasing map from K0 into R
+ for which µ∅ = 0.

Note that we need K0 to contain ∅ for M0 to make sense. I will assume that M0

holds thoughout this Appendix. As a convenient reminder, I will also reserve the
name set function on K0 for those µ that satisfy M0.

The extension can proceed by various approximation arguments. In the
first three Sections of this Appendix, I will describe only the method based on
approximation of sets from inside. Although not entirely traditional, the method has
the advantage that it leads to measures with a useful approximation property called
K0-regularity:

µA = sup{µK : A ⊇ K ∈ K0} for each A in A.

Remark. When K consists of compact sets, a measure with the inner regularity
property is often called a Radon measure.

The desired regularity property makes it clear how the extension of µ must be
constructed, namely, by means of the inner measure µ∗, defined for every subset A
of X by µ∗ A := sup{µK : A ⊇ K ∈ K0}.

In the business of building measures it pays to start small, imposing as few
conditions on the initial domain K0 as possible. The conditions are neatly expressed
by means of some picturesque terminology. Think of X as a large expanse of muddy
lawn, and think of subsets of X as paving stones to lay on the ground, with overlaps
permitted. Then a collection of subsets of X would be a paving for X. The analogy
might seem far-fetched, but it gives a concise way to describe properties of various
classes of subsets. For example, a field is nothing but a (∅, ∪ f, ∩ f, c) paving,
meaning that it contains the empty set and is stable under the formation of finite
unions (∪ f ), finite intersections (∩ f ), and complements (c). A (∅, ∪c, ∩c, c) paving
is just another name for a sigma-field—the ∪c and ∩c denote countable unions and
intersections. With inner approximations the natural assumption is that K0 be at
least a (∅, ∪ f, ∩ f ) paving—a lattice of subsets.

Remark. Note well. A lattice is not assumed to be stable under differences
or the taking of complements. Keep in mind the prime example, where K0 denotes
the class of compact subsets of a (Hausdorff) topological space, such as the real
line. Inner approximation by compact sets has turned out to be a good thing for
probability theory.

For a general lattice K0, the role of the closed sets (remember f for fermé)
is played by the class F(K0) of all subsets F for which F K ∈ K0 for every K in
K0. (Of course, K0 ⊆ F(K0). The inclusion is proper if X /∈ K0.) The sigma-field
B(K0) generated by F(K0) will play the role of the Borel sigma-field.

The first difficulty along the path leading to countably additive measures lies
in the choice of the sigma-field A, in order that the restriction of µ∗ to A has the
desired countable additivity properties. The Carathéodory splitting method identifies
a suitable class of sets by means of an apparently weak substitute for the finite
additivity property. Define S0 as the class of all subsets S of X for which

<1> µ∗ A = µ∗
(

AS
) + µ∗

(
ASc

)
for all subsets A of X.
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If A ∈ S0 then µ∗ adds the measures of the disjoint sets AS and ASc correctly. As
far as µ∗ is concerned, S splits the set A “properly.”

<2> Lemma. The class S0 of all subsets S with the property <1> is a field. The
restriction of µ∗ to S0 is a finitely additive measure.

Proof. Trivially S0 contains the empty set (because µ∗∅ = 0) and it is stable under
the formation of complements. To establish the field property it suffices to show
that S0 is stable under finite intersections.

Suppose S and T belong to S0. Let A be an arbitrary subset

S

Sc

T T c

AST

of X. Split A into two pieces using S, then split each of those two
pieces using T . From the defining property of S0,

µ∗ A = µ∗ (AS) + µ∗
(

ASc
)

= µ∗ (AST ) + µ∗
(

AST c
) + µ∗

(
AScT

) + µ∗
(

AScT c
)
.

Decompose A(ST )c similarly to see that the last three terms sum to
µ∗ A(ST )c. The intersection ST splits A correctly; the class S0 contains ST ; the
class is a field. If ST = 0, choose A := S ∪ T to show that the restriction of µ∗
to S0 is finitely additive.�

At the moment there is no guarantee that S0 includes all the members of K0,
let alone all the members of B(K0). In fact, the Lemma has nothing to do with the
choice of µ and K0 beyond the fact that µ∗(∅) = 0. To ensure that S0 ⊇ K0 we
must assume that µ has a property called K0-tightness, an analog of finite additivity
that compensates for the fact that the difference of two K0 sets need not belong
to K0. Section 2 explains K0-tightness. Section 3 adds the assumptions needed to
make the restriction of µ∗ to S0 a countable additivity measure.

2. Tightness

If S0 is to contain every member of K0, every set K ∈ K0 must split every
set K1 ∈ K0 properly, in the sense of Definition <1>,

µ∗(K1) = µ∗(K1 K ) + µ∗(K1\K ).

Writing K0 for K1 K , we then have the following property as a necessary condition
for K0 ⊆ S0. It will turn out that the property is also sufficient.

<3> Definition. Say that a set function µ on K0 is K0-tight if µK1 = µK0+µ∗(K1\K0)

for all pairs of sets in K0 with K1 ⊇ K0.

The intuition is that there exists a set K ∈ K0 that almost fills out K1\K0, in the
sense that µK ≈ µK1 − µK0. More formally, for each ε > 0 there exists a Kε ∈ K0

with Kε ⊆ K1\K0 and µKε > µK1 − µK0 − ε. As a convenient abbreviation, I will
say that such a Kε fills out the difference K1\K0 within an ε.

Tightness is as close as we come to having K0 stable under proper differences.
It implies a weak additivity property: if K and H are disjoint members of K0 then
µ(H ∪ K ) = µH +µK , because the supremum in the definition of µ∗

(
(H ∪ K )\K

)
is
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achieved by H . Additivity for disjoint K0-sets implies superadditivity for the inner
measure,

<4> µ∗(A ∪ B) ≥ µ∗ A + µ∗ B for all disjoint A and B,

because the union of each inner approximating H for A and each inner approximating
K for B is an inner approximating set for A ∪ B. Tightness also gives us a way to
relate S0 to K0.

<5> Lemma. Let K0 be a (∅, ∪ f, ∩ f ) paving, and µ be K0-tight set function. Then

(i) S ∈ S0 if and only if µK ≤ µ∗ (K S) + µ∗ (K\S) for all K in K0;

(ii) the field S0 contains the field generated by F(K0).

Proof. Take a supremum in (i) over all K ⊆ A to get µ∗ A ≤ µ∗ (AS) + µ∗ (A\S).
The superadditivity property <4> gives the reverse inequality.

If S ∈ F(K0) and K ∈ K0, the pair K1 := K and K0 := K S are candidates for
the tightness equality, µK = µ (K S) + µ∗ (K\S), implying the inequality in (i).�

3. Countable additivity

Countable additivity ensures that measures are well behaved under countable limit
operations. To fit with the lattice properties of K0, it is most convenient to insert
countable additivity into the construction of measures via a limit requirement that
has been called σ -smoothness in the literature. I will stick with that term, rather
than invent a more descriptive term (such as σ -continuity from above), even though
I feel that it conveys not quite the right image for a set function.

<6> Definition. Say that µ is σ -smooth (along K0) at a set K in K0 if µKn ↓ µK for
every decreasing sequence of sets {Kn} in K0 with intersection K .

Remark. It is important that µ takes only (finite) real values for sets in K0.
If λ is a countably additive measure on a sigma-field A, and An ↓ A∞ with all Ai

in A, then we need not have λAn ↓ λA∞ unless λAn < ∞ for some n, as shown by
the example of Lebesgue measure with An = [n, ∞) and A∞ = ∅.

Notice that the definition concerns only those decreasing sequences in K0 for
which

⋂
n∈N

Kn ∈ K0. At the moment, there is no presumption that K0 be stable
under countable intersections. As usual, the σ is to remind us of the restriction to
countable families. There is a related property called τ -smoothness, which relaxes
the assumption that there are only countably many Kn sets—see Problem [1].

Tightness simplifies the task of checking for σ -smoothness. The next proof is
a good illustration of how one makes use of K0-tightness and the fact that µ∗ has
already been proven finitely additive on the field S0.

<7> Lemma. If a K0-tight set function on a (∅, ∪ f, ∩ f ) paving K0 is σ -smooth at ∅
then it is σ -smooth at every set in K0.
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Proof. Suppose Kn ↓ K∞, with all Ki in K0. Find an H ∈ K0 that fills out the

H

K1

K∞

Kn

difference K1\K∞ within ε. Write L for H ∪ K∞. Finite
additivity of µ∗ on S0 lets us break µKn into the sum

µK∞ + µ (Kn H) + µ∗ (Kn\L) .

The middle term decreases to zero as n → ∞ because
Kn H ↓ K∞ H = ∅. The last term is less than

µ∗ (K1\L) = µK1 − µK∞ − µH = µ∗ (K1\K∞) − µH,

which is less than ε, by construction.�
If K0 is a stable under countable intersections, the σ -smoothness property

translates easily into countable additivity for µ∗ as a set function on S0.

<8> Theorem. Let K0 be a lattice of subsets of X that is stable under countable
intersections, that is, a (∅, ∪ f, ∩c) paving. Let µ be a K0-tight set function on a
K0, with associated inner measure µ∗ A := sup{µK : A ⊇ K ∈ K0}. Suppose µ is
σ -smooth at ∅ (along K0). Then

(i) the class

S0 := {S ⊆ X : µK ≤ µ∗(K S) + µ∗(K\S) for all K in K0}
is a sigma-field on X;

(ii) S0 ⊇ B(K0), the sigma-field generated by F(K0);

(iii) the restriction of µ∗ to S0 is a K0-regular, countably additive measure;

(iv) S0 is complete: if S1 ⊇ B ⊇ S0 with Si ∈ S0 and µ∗(S1\S0) = 0 then B ∈ S0.

Proof. From Lemma <5>, we know that S0 is a field that contains F(K0). To
prove (i) and (ii), it suffices to show that the union S := ∪i∈NTi of a sequence of sets
in S0 also belongs to S0, by establishing the inequality µK ≤ µ∗ (K S) + µ∗ (K\S),
for each choice of K in K0.

Write Sn for ∪i≤nTi . For a fixed ε > 0 and each i , choose a K0-subset
TnT1

K

Kn

L∞

Ki of K\Si for which µKi > µ∗ (K\Si ) − ε/2i . Define
Ln := ∩i≤n Ki . Then, by the finite additivity of µ∗ on S0,

µ∗(K\Sn) − µLn ≤ ∑
i≤n

(
µ∗(K\Si ) − µKi

)
< ε.

The sequence of sets {Ln} decreases to a K0-subset
L∞ of K\S. By the σ -smoothness at L∞ we have
µLn ≤ µL∞ + ε ≤ µ∗ (K\S) + ε, for n large enough,

which gives µ∗ (K\Sn) ≤ µLn + ε ≤ µ∗ (K\S) + 2ε, whence

µK = µ∗ (K Sn) + µ∗ (K\Sn) because Sn ∈ S0

≤ µ∗ (K S) + µ∗ (K\S) + 2ε.

It follows that S ∈ S0.
When K ⊆ S, the inequality µK ≤ µ∗ (K Sn) + µ∗ (K\S) + 2ε and the finite

additivity of µ∗ on S0 imply µK ≤ ∑
i≤n µ∗ (K Ti ) + 2ε. Take the supremum

over all K0-subsets of S, let n tend to infinity, then ε tend to zero, to deduce
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that µ∗S ≤ ∑
i∈N

µ∗Ti . The reverse inequality follows from the superadditivity
property <4>. The set function µ∗ is countably additive on the the sigma-field S0.

For (iv), note that µK = µ∗ (K S0) + µ∗ (K\S0), which is smaller than

µ∗ (K B) + µ∗ (K\S1) + µ∗(K S1Sc
0) ≤ µ∗ (K B) + µ∗ (K\B) + 0,

for every K in K0.�
In one particularly important case we get σ -smoothness for free, without any

extra assumptions on the set function µ. A paving K0 is said to be compact (in the
sense of Marczewski 1953) if: to each countable collection {Ki : i ∈ N} of sets from
K0 with ∩i∈NKi = ∅ there is some finite n for which ∩i≤n Ki = ∅. In particular,
if Ki ↓ ∅ then Kn = ∅ for some n. For such a paving, the σ -smoothness property
places no constraint on µ beyond the standard assumption that µ∅ = 0.

<9> Example. Let K0 be a collection of closed, compact subsets of a topological
space X. Suppose {Kα : α ∈ A} is a subcollection of K0 for which ∩α∈A Kα = ∅.
Arbitrarily choose an α0 from A. The collection of open sets Gα := K c

α for α ∈ A
covers the compact set Kα0 . By the definition of compactness, there exists a finite
subcover. That is, for some α1, . . . , αm we have Kα0 ⊆ ∪m

i=1Gαi = (∩m
i=1 Kαi

)c. Thus
∩m

i=0 Kαi = ∅. In particular, K0 is also compact in the Marczewski sense.�
Remark. Notice that the Marczewski concept involves only countable sub-
collections of K0, whereas the topological analog from Example <9> applies to
arbitrary subcollections. The stronger property turns out to be useful for proving
τ -smoothness, a property stronger than σ -smoothness. See Problem [1] for the
definition of τ -smoothness.

4. Extension to the ∩c-closure

If K0 is not stable under countable intersections, σ -smoothness is not quite enough
to make µ∗ countably additive on S0. We must instead work with a slightly richer
approximating class, derived from K0 by taking its ∩c-closure: the class K of
all intersections of countable subcollections from K0. Clearly K is stable under
countable intersections. Also stability under finite unions is preserved, because

(∩i∈N Hi ) ∪ (∩j∈NKj
) = ∩i, j∈N×N

(
Hi ∪ Kj

)
,

a countable intersection of sets from K0. Note also that if K0 is a compact paving
then so is K.

The next Lemma shows that the natural extension of µ to a set function on K

inherits the desirable σ -smoothness and tightness properties.

<10> Lemma. Let µ be a K0-tight set function on a (∅, ∪ f, ∩ f ) paving K0, which is
σ -smooth along K0 at ∅. Then the extension µ̃ of µ to the ∩c-closure K, defined
by

<11> µ̃H := inf{µK : H ⊆ K ∈ K0} for H ∈ K,

is K-tight and σ -smooth (along K) at ∅.
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Proof. Lemma <7> gives us a simpler expression for µ̃. If {Kn : n ∈ N} ⊆ K0 and
Kn ↓ L ∈ K, then µ̃L = infn µKn because, for each K0-subset K with K ⊇ L,

µ̃Kn ≤ µ (Kn ∪ K ) ↓ µK by σ -smoothness of µ at K .

The σ -smoothness at ∅ is easy. If Hn := ⋂
j∈N

Knj ∈ K and Hn ↓ ∅ then the
sets Kn := ⋂

i≤n, j≤n Ki j belong to K0, and Hn = H1 H2 . . . Hn ⊆ Kn ↓ ∅. It follows
that µ̃Hn ≤ µKn ↓ 0.

The K-tightness is slightly trickier. Suppose H1 ⊇ H0, with both sets in K. Let

K

H1

L

H0

K1

{Kn} be a decreasing sequence of sets in K0 with intersection H1. For a fixed ε > 0,
choose a K in K0 with K ⊇ H0 and µK < µ̃H0 + ε. With no loss of generality we
may assume that K ⊆ K1. Invoke K0-tightness to find a K0-subset L of K1\K for
which µL > µK1 − µK − ε > µK1 − µ̃H0 − 2ε. Notice that the sequence {L Kn}

decreases to L H1, a K-subset of H1\K ⊆ H1\H0. The finite
additivity of µ∗, when restricted to S0, gives

µ(L Kn) = µL + µKn − µ (L ∪ Kn)

> (µK1 − µ̃H0 − 2ε) + µKn − µK1

→ −µ̃H0 − 2ε + µ̃H1 as n → ∞.

Thus µ̃ (L H1) ≥ µ̃H1 − µ̃H0 − 2ε, as required for K-tightness.�
Remark. It is helpful, but not essential, to have a different symbol for the
extension of µ to a larger domain while we are establishing properties for that
extension. For example, it reminds us not to assume that µ̃ has the same properties
as µ before we have proved as much. Once the result is proven, the µ̃ has served
its purpose, and it can then safely be replaced by µ.

A similar argument might be made about the distinction between K0 and K,
but there is some virtue in retaining the subscript as a reminder than K0 is assumed
stable only under finite intersections.

Together, Theorem <8> and Lemma <10> give a highly useful extension
theorem for set functions defined initially on a lattice of subsets.

<12> Theorem. Let K0 be a (∅, ∪ f, ∩ f ) paving of subsets of X, and let K denote
its ∩c-closure. Let µ : K0 → R

+ be a K0-tight set function that is sigma-smooth
along K0 at ∅. Then µ has a unique extension to a complete, K-regular, countably
additive measure on a sigma-field S, defined by

µK := inf{µK0 : K ⊆ K0 ∈ K0} for K ∈ K,

µS := sup{µK : S ⊇ K ∈ K} for S ∈ S.

The sigma-field S contains all sets F for which F K ∈ K for all K in K. In
particular, S ⊇ K ⊇ K0.

Remark. Remember: σ -smoothness is automatic if K0 is a compact paving.

5. Lebesgue measure

There are several ways in which to construct Lebesgue measure on R
k . The

following method for R
2 is easily extended to other dimensions.
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Take K0 to consist of all finite unions of semi-open rectangles (α1, β1]⊗(α2, β2].
Each difference of two semi-open rectangles can be written as a disjoint union of

at most eight similar rectangles. As a consequence, every member
of K0 has a representation as a finite union of disjoint semi-open
rectangles, and K0 is stable under the formation of differences. The
initial definition of Lebesgue measure m, as a set function on K0,
might seem obvious—add up the areas of the disjoint rectangles.

It is a surprisingly tricky exercise to prove rigorously that m is well defined and
finitely additive on K0.

Remark. The corresponding argument is much easier in one dimension. It is,
perhaps, simpler to consider only that case, then obtain Lebesgue measure in higher
dimensions as a completion of products of one-dimensional Lebesgue measures.

The K0-tightness of m is trivial, because K0 is stable under differences: if
K1 ⊇ K0, with both sets in K0, then K1\K0 ∈ K0 and mK1 − mK0 = m(K1\K0).

To establish σ -smoothness, consider a decreasing sequence {Kn} with empty
intersection. Fix ε > 0. If we shrink each component rectangle of Kn by a small
enough amount we obtain a set Ln in K0 whose closure L̄n is a compact subset of Kn

and for which m(Kn\Ln) < ε/2n . The family of compact sets {L̄n : n = 1, 2, . . .}
has empty intersection. For some finite N we must have ∩i≤N L̄i = ∅, so that

mKN ≤ m
(∩i≤N Li

) + ∑
i≤N m(Ki\Li ) ≤ 0 + ∑

i≤N ε/2i .

It follows that mKn tends to zero as n tends to infinity. The finitely additive
measure m is K0-smooth at ∅. By Theorem <12>, it extends to a K-regular,
countably additive measure on S, a sigma-field that contains all the sets in F(K).

You should convince yourself that K, the ∩c-closure of K0, contains all compact
subsets of R

2, and F(K) contains all closed subsets. The sigma-field S is complete
and contains the Borel sigma-field B(R2). In fact S is the Lebesgue sigma-field, the
closure of the Borel sigma-field.

6. Integral representations

Throughout the book I have made heavy use of the fact that there is a one-to-one
correspondence (via integrals) between measures and increasing linear functionals
on M+ with the Monotone Convergence property. Occasionally (as in Sections 4.8
and 7.5), I needed an analogous correspondence for functionals on a subcone
of M+. The methods from Sections 1, 2, and 3 can be used to construct measures
representing such functionals if the subcone is stable under lattice-like operations.

<13> Definition. Call a collection H+ of nonnegative real functions on a set X a lattice
cone if it has the following properties. For h, h1 and h2 in H+, and α1 and α2

in R
+:

(H1) α1h1 + α2h2 belongs to H+;
(H2) h1\h2 := (h1 − h2)

+ belongs to H+;
(H3) the pointwise minimum h1 ∧ h2 and maximum h1 ∨ h2 belong to H+;
(H4) h ∧ 1 belongs to H+.
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The best example of a lattice cone to keep in mind is the class C+
0 (Rk) of

all nonnegative, continuous functions with compact support on some Euclidean
space R

k .

Remark. By taking the positive part of the difference in H2, we keep the
function nonnegative. Properties H1 and H2 are what one would get by taking
the collection of all positive parts of members of a vector space of functions.
Property H4 is sometimes called Stone’s condition. It is slightly weaker than an
assumption that the constant function 1 should belong to H+. Notice that the cone
C+

0 (Rk) satisfies H4, but it does not contain nonzero constants. Nevertheless, if
h ∈ H+ and α is a positive constant then the function (h −α)+ = (h − α(1 ∧ h/α))+

belongs to H+.

<14> Definition. Say that a map T : H+ �→ R
+ is an increasing linear functional if,

for h1, h2 in H+, and α1, α2 in R
+:

(T1) T (α1h1 + α2h2) = α1T h1 + α2T h2;
(T2) T h1 ≤ T h2 if h1 ≤ h2 pointwise.

Call the functional σ -smooth at 0 if
(T3) T hn ↓ 0 whenever the sequence {hn} in H+ decreases pointwise to zero.

Say that T has the truncation property if
(T4) T (h ∧ n) → T h as n → ∞, for each h in H+.

Remark. For an increasing linear functional, T3 is equivalent to an apparently
stronger property,

(T′
3) if hn ↓ h∞ with all hi in H+ then T hn ↓ T h∞,

because T hn ≤ T h∞ + T (hn\h∞) ↓ T h∞ + 0. Property T4 will allow us to reduce
the representation of arbitrary members of H+ as integrals to the representation for
bounded functions in H+.

If µ is a countably additive measure on a sigma-field A, and all the functions
in H+ are µ-integrable, then the T h := µh defines a functional on H+ satisfying T1

through T4. The converse problem—find a µ to represent a given functional T —is
called the integral representation problem. Theorem <8> will provide a solution
to the problem in some generality.

Let K0 denote the class of all sets K for which there exists a countable
subfamily of H+ with pointwise infimum equal to (the indicator function of) K .
Equivalently, by virtue of H3, there is a decreasing sequence in H+ converging
pointwise to K . It is easy to show that K0 is a (∅, ∪ f, ∩c)-paving of subsets for X.
Moreover, as the next Lemma shows, the functions in H+ are related to K0 and
F(K0) in much the same way that nonnegative, continuous functions with compact
support in R

k are related to compact and closed sets.

<15> Lemma. For each h in H+ and each nonnegative constant α,
(i) {h ≥ α} ∈ K0 if α > 0, and (ii) {h ≤ α} ∈ F(K0).

Proof. For (i), note that {h ≥ α} = infn∈N

(
1 ∧ n

(
h − α + n−1

)+)
, a pointwise

infimum of a sequence of functions in H+. For (ii), for a given K in K0, find a
sequence {hn : n ∈ N} ⊆ H+ that decreases to K . Then note that K {h ≤ α} =
infn hn\ (nh − nα)+, a set that must therefore belong to K0.�
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<16> Theorem. Let H+ be a lattice cone of functions, satisfying requirements H1

through H4, andT be an increasing, linear functional onH+ satisfying conditions T1
through T4. Then the set function defined onK0 by µK := inf{T h : K ≤ h ∈ H+}
is K0-tight andσ -smooth alongK0 at ∅. Its extension to aK0-regular measure
on B(K0) represents the functional, that is,T h = µh for all h in H+. Thereis only
oneK0-regular measure onB(K0) whose integral representsT .

Remark. Notice that we can replace the infimum in the definition ofµ by an
infimum along any decreasing sequence{hn} in H+ with pointwise limit K . For if
K ≤ h ∈ H+, then infn T hn ≤ infn T (hn ∨ h) = T h, by T2 and T′

3.

Proof. We must prove thatµ is σ -smooth alongK0 at ∅ andK0-tight; and then
prove thatT h ≥ µh and T h ≤ µh for everyh in H+.

σ-smoothness: SupposeKn ∈ K0 and Kn ↓ ∅. ExpressKn as a pointwise infimum
of functions {hn,i } in H+. Write hn for infm≤n, i≤n hm,i . Then Kn ≤ hn ↓ 0, and
henceµKn ≤ T hn ↓ 0 by theσ -smoothness forT and the definition ofµ.

g
hnK0

t

K1

tL

K0-tightness: Consider setsK1 ⊇ K0 in K0. ChooseH+ functionsg ≥ K0 and
hn ↓ K1 and fix a positive constantt < 1. TheH+-function gn := (hn − n(g\t))+

decreases pointwise to the setL := K1{g ≤ t} ⊆ K1\K0. Also, it is trivially true
that g ≥ t K1{g > t}. From the inequalitygn + g ≥ t K1 we getµK1 ≤ T (gn + g)/t ,
because(gn + g)/t is one of theH+-functions that enters into the definition ofµK1.
Let n tend to infinity, take an infimum over allg ≥ K0, then lett increase to 1, to
deduce thatµK1 ≤ µL + µK0, as required forK0-tightness.

By Theorem<8>, the set functionµ extends to aK0-regular measure onB(K0)

Inequality T h ≥ µh: Supposeh ≥ u := ∑k
j=1 αj Aj ∈ M+

simple. We need to
show thatT h ≥ µu := ∑

j αjµAj . We may assume that theA-measurable setsAj

are disjoint. ChooseK0 setsKj ⊆ Aj , thereby defining another simple function
v := ∑k

j=1 αj K j ≤ u. Find sequenceshnj from H+ with hnj ↓ αj K j , so that∑
j T hnj ↓ ∑

j αjµKj = µv. With no loss of generality, assumeh ≥ hnj for all n
and j . Then we have a pointwise bound,

∑
j hnj ≤ h + ∑

i< j hni ∧ hnj , because
maxj hnj ≤ h and each of the smallerhnj summands must appear in the last sum.
Thus

µv := ∑
j αjµKj ≤ ∑

j T hnj ≤ T h + ∑
i< j T

(
hni ∧ hnj

)
.

As n tends to infinity,hni ∧ hnj ↓ Ki Kj = ∅. By σ -smoothness ofT , the right-hand
side decreases toT h, leaving µv ≤ T h. Take the supremum over allKj ⊆ Aj , then
take the supremum over allu ≤ h, to deduce thatµh ≤ T h.

Inequality T h ≤ µh: Invoke property T4 to reduce to the case of a boundedh.
For afixed ε > 0, approximateh by a simple functionsε := ε

∑N
i=1{h ≥ iε}, with

steps of sizeε. Here N is a fixed value large enough to makeNε an upper bound
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for h. Notice that {h ≥ iε} ∈ K0, by Lemma <15>. Find sequences hni from H+

with hni ↓ {h ≥ iε}. Then we have

sε ≤ h ≤ (h ∧ ε) + sε ≤ (h ∧ ε) + ε
∑N

i=1 hni ,

from which it follows that

T h ≤ T (h ∧ ε) + ε
∑N

i=1 T hni

→ T (h ∧ ε) + ε
∑N

i=1 µ{h ≥ iε} as n → ∞
≤ T (h ∧ ε) + µh because ε

∑N
i=1{h ≥ iε} = sε ≤ h

→ µh as ε → 0, by σ -smoothness of T .

Uniqueness: Let ν be another K0-regular representing measure. If hn ↓ K ∈ K0,
and hn ∈ H+, then µK = limn µhn = limn T hn = limn νhn = νK . Regularity extends
the equality to all sets in B(K0).�

<17> Example. Let H+ equal C+
0 (X), the cone of all nonnegative, continuous functions

with compact support on a locally compact, Hausdorff space X. For example, X

might be R
k . Let T be an increasing linear functional on C+

0 (X).
Property T4 holds for the trivial reason that each member of C+

0 (X) is bounded.
Property T3 is automatic, for a less trivial reason. Suppose hn ↓ 0. Without loss
of generality, K ≥ h1 for some compact K . Choose h in C+

0 (X) with h ≥ K . For
fixed ε > 0, the union of the open sets {hn < ε} covers K . For some finite N , the
set {hN < ε} contains K , in which case hN ≤ εK ≤ εh, and T hN ≤ εT h. The
σ -smoothness follows.

The functional T has a representation T h = µh on C+
0 (X), for a K0-regular

measure µ. The domain of µ need not contain all the Borel sets. However, by an
analog of Lemma <10> outlined in Problem [1], it could be extended to a Borel
measure without disturbing the representation.�

<18> Example. Let H+ be a lattice cone of bounded continuous functions on a
topological space, and let T : H+ → R

+ be a linear functional (necessarily
increasing) with the property that to each ε > 0 there exists a compact set Kε

for which T h ≤ ε if 0 ≤ h ≤ K c
ε . (In Section 7.5, such a functional was called

functionally tight.)
Suppose 1 ∈ H+. The functional is automatically σ -smooth: if 1 ≥ hi ↓ 0 then

eventually Kε ⊆ {hi < ε}, in which case T hi ≤ T
(
(hi − ε)+ + ε

) ≤ ε + εT (1). In
fact, the same argument shows that the functional is also τ -smooth, in the sense of
Problem [2].

The functional T is represented by a measure µ on the sigma-field generated
by H+. Suppose there exists a sequence {hi } ⊆ H+ for which 1 ≥ hi ↓ Kε . (The
version of the representation theorem for τ -smooth functionals, as described by
Problem [2], shows that it is even enough to have H+ generate the underlying
topology.) Then µKε = limi T hi = T (1) − limi T (1 − hi ) ≥ T (1) − ε. That is, µ is
a tight measure, in the sense that it concentrates most of its mass on a compact set.
It is inner regular with respect to approximation by the paving of compact sets.�



300 Appendix A: Measures and integrals

7. Problems

[1] A family of sets U is said to be downward filtering if to each pair U1, U2 in U

there exists a U3 in U with U1 ∩ U2 ⊇ U3. A set function µ : K0 → R
+ is said

to be τ -smooth if inf{µK : K ∈ U} = µ(∩U) for every downward filtering family
U ⊆ K0. Write K for the ∩a-closure of a (∅, ∪ f, ∩ f ) paving K0, the collection of
all possible intersections of subclasses of K0.

(i) Show that K is a (∅, ∪ f, ∩a) paving (stable under arbitrary intersections).

(ii) Show that a K0-tight set function that is τ -smooth at ∅ has a K-tight, τ -additive
extension to K.

[2] Say that an increasing functional T on H+ is τ -smooth at zero if inf{T h : h ∈ V} for
each subfamily V of H+ that is downward filtering to the zero function. (That is, to
each h1 and h2 in V there is an h3 in V with h1 ∧ h2 ≥ h3 and the pointwise infimum
of all functions in V is everywhere zero.) Extend Theorem <16> to τ -smooth
functionals by constructing a K-regular representing measure from the class K of
sets representable as pointwise infima of subclasses of H+.

8. Notes

The construction via K-tight inner measures is a reworking of ideas from
Topsøe (1970). The application to integral representations is a special case of
results proved by Pollard & Topsøe (1975).

The book by Fremlin (1974) contains an extensive treatment of the relationship
between measures and linear functionals. The book by König (1997) develops the
theory of measure and integration with a heavy emphasis on inner regularity.

See Pfanzagl & Pierlo (1969) for an exposition of the properties of pavings
compact in the sense of Marczewski.
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