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Preface

This book began life as a set of handwritten notes, distributed to students in my
one-semester graduate course on probability theory, a course that had humble aims:
to help the students understand results such as the strong law of large numbers, the
central limit theorem, conditioning, and some martingale theory. Along the way
they could expect to learn a little measure theory and maybe even a smattering of
functional analysis, but not as much as they would learn from a course on Measure
Theory or Functional Analysis.

In recent years the audience has consisted mainly of graduate students in
statistics and economics, most of whom have not studied measure theory. Most of
them have no intention of studying measure theory systematically, or of becoming
professional probabilists, but they do want to learn some rigorous probability
theory—in one semester.

Faced with the reality of an audience that might have neither the time nor
the inclination to devote itself completely to my favorite subject, I sought to
compress the essentials into a course as self-contained as I could make it. I tried
to pack into the first few weeks of the semester a crash course in measure theory,
with supplementary exercises and a whirlwind exposition (Appendix A) for the
enthusiasts. I tried to eliminate duplication of mathematical effort if it served no
useful role. After many years of chopping and compressing, the material that I most
wanted to cover all fit into a one-semester course, divided into 25 lectures, each
lasting from 60 to 75 minutes. My handwritten notes filled fewer than a hundred
pages.

I had every intention of making my little stack of notes into a little book. But I
couldn’t resist expanding a bit here and a bit there, adding useful reference material,
spelling out ideas that I had struggled with on first acquaintance, slipping in extra
topics that my students have seemed to need when writing dissertations, and pulling
in material from other courses I have taught and neat tricks I have learned from my
friends. And soon it wasn’t so little any more.

Many of the additions ended up in starred Sections, which contain harder
material or topics that can be skipped over without loss of continuity.

My treatment includes a few eccentricities that might upset some of my
professional colleagues. My most obvious departure from tradition is in the use
of linear functional notation for expectations, an approach I first encountered in
books by de Finetti. I attempt to explain the virtues of this notation in the first
two Chapters. Another slight novelty—at least for anyone already exposed to the
Kolmogorov interpretation of conditional expectations—appears in my treatment
of conditioning, in Chapter 5. For many years I have worried about the wide gap
between the free-wheeling conditioning calculations of an elementary probability
course and the formal manipulations demanded by rigor. I claim that a treatment
starting from the idea of conditional distributions offers one way of bridging the gap,
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at least for many of the statistical applications of conditioning that have troubled me
the most.

The twelve Chapters and six Appendixes contain general explanations, remarks,
opinions, and blocks of more formal material. Theorems and Lemmas contain the
most important mathematical details. Examples contain gentler, or less formal,
explanations and illustrations. Supporting theoretical material is presented either
in the form of Exercises, with terse solutions, or as Problems (at the ends of the
Chapters) that work step-by-step through material that missed the cutoff as Exercises,
Lemmas, or Theorems. Some Problems are routine, to give students an opportunity
to digest the ideas in the text without great mental effort; some Problems are hard.

A possible one-semester course

Here is a list of the material that I usually try to cover in the one-semester
graduate course.

Chapter 1: Spend one lecture on why measure theory is worth the effort, using
a few of the Examples as illustrations. Introduce de Finetti notation, identifying
sets with their indicator functions and writingP for both probabilities of sets and
expectations of random variables. Mention, very briefly, the fair price Section as an
alternative to the frequency interpretation.

Chapter 2: Cover the unstarred Sections carefully, but omitting many details
from the Examples. Postpone Section 7 until Chapter 3. Postpone Section 8
until Chapter 6. Describe briefly the generating class theorem for functions, from
Section 11, without proofs.

Chapter 3: Cover Section 1, explaining the connection with the elementary notion
of a density. Take a short excursion into Hilbert space (explaining the projection
theorem as an extension of the result for Euclidean spaces) before presenting the
simple version of Radon-Nikodym. Mention briefly the classical concept of absolute
continuity, but give no details. Maybe say something about total variation.

Chapter 4: Cover Sections 1 and 2, leaving details of some arguments to the
students. Give a reminder about generating classes of functions. Describe the
construction ofµ ⊗ �, only for a finite kernel�, via the iterated integral. Cover
product measures, using some of the Examples from Section 4. Explain the need for
the blocking idea from Section 6, using the Maximal Inequality to preview the idea
of a stopping time. Mention the truncation idea behind the version of the SLLN for
independent, identically distributed random variables with finite first moments, but
skip most of the proof.

Chapter 5: Discuss Section 1 carefully. Cover the high points of Sections 2
through 4. (They could be skipped without too much loss of continuity, but I prefer
not to move straight into Kolmogorov conditioning.) Cover Section 6.
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Chapter 6: Cover Sections 1 through 4, but skipping over some Examples.
Characterize uniformly integrable martingales, using Section 6 and some of the
material postponed from Section 8 of Chapter 2, unless short of time.

Chapter 7: Cover the first four Sections, skipping some of the examples of central
limit theorems near the end of Section 2. Downplay multivariate results.

Chapter 8: Cover Sections 1, 2, 4, and 6.

If time is left over, cover a topic from the remaining Chapters.
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