
Chapter 2

Expectations

Recall from Chapter 1 that a random variable is just a function that attaches a number
to each item in the sample space. Less formally, a random variable corresponds to a numeri-
cal quantity whose value is determined by some chance mechanism.

Just as events have (conditional) probabilities attached to them, with possible interpre-
tation as a long-run frequency, so too do random variables have a number interpretable as a
long-run average attached to them. Given a particular piece of information, the symbol

E
(
X | information

)
denotes the (conditional) expected value or (conditional) expectation of the random vari-
able X (given that information). When the information is taken as understood, the expected
value is abbreviated to EX .

Expected values are not restricted to lie in the range from zero to one.

As with conditional probabilities, there are convenient abbreviations when the condition-
ing information includes something like {event F has occurred}:

E
(
X | information and “F has occurred”

)
E

(
X | information, F

)
Unlike many authors, I will take the expected value as a primitive concept, not one to be
derived from other concepts. All of the methods that those authors use to define expected
values will be derived from a small number of basic rules. You should provide the interpre-
tations for these rules as long-run averages of values generated by independent repetitions of
random experiments.

Rules for (conditional) expectations

Let X and Y be random variables, c and d be constants, and F1, F2, . . . be events. Then:

(E1) E
(
cX + dY | info

) = cE
(
X | info

) + dE
(
Y | info

)
;

(E2) if X can only take the constant value c under the given “info” then E
(
X | info

) = c;

(E3) if the given “info” forces X ≤ Y then E
(
X | info

) ≤ E
(
Y | info

)
;

(E4) if the events F1, F2, . . . are disjoint and have union equal to the whole sample space
then

E
(
X | info

) =
∑

i

E
(
X | Fi , info

)
P
(
Fi | info

)
.

Only rule E4 should require much work to interpret. It combines the power of both
rules P4 and P5 for conditional probabilities. Here is the frequency interpretation for the
case of two disjoint events F1 and F2 with union S.
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Chapter 2 Expectations

Repeat the experiment a very large number (n) of times, noting for each repetition the
value taken by X and which of F1 or F2 occurs.

1 2 3 4 . . . n − 1 n total
F1 occurs � � � . . . � � n1

F2 occurs � . . . � � � n2

X x1 x2 x3 x4 . . . xn−1 xn

Those trials where F1 occurs correspond to conditioning on F1:

E
(
X | F1, info

) ≈ 1

n1

∑
F1 occurs

xi .

Similarly,

E
(
X | F2, info

) ≈ 1

n2

∑
F2 occurs

xi

and

P
(
F1 | info

) ≈ n1/n

P
(
F2 | info

) ≈ n2/n.

Thus

E
(
X | F1, info

)
P
(
F1 | info

) + E
(
X | F2, info

)
P
(
F2 | info

)
≈

(
1

n1

∑
F1 occurs

xi

) (n1

n

)
+

(
1

n2

∑
F2 occurs

xi

) (n2

n

)

= 1

n

n∑
i=1

xi

≈ E
(
X | info

)
.

As n gets larger and larger all approximations are supposed to get better and better, and so
on.

There is another interpretation, which does not depend on a preliminary concept of in-
dependent repetitions of an experiment. It interprets EX as a“fair price” to pay up-front, in
exchange for a random return X later—like an insurance premium.

Example 1: Interpretation of expectations as a fair prices for an uncertain returns.
(Only for those who don’t find the frequency interpretation helpful—not essential
reading)

Rules E2 and E4 imply immediately a result that can be used to calculate expectations
from probabilities. Consider the case of a random variable Y expressible as a function g(X)

of another random variable, X , which takes on only a discrete set of values c1, c2, . . .. Let
Fi be the subset of S on which X = ci , that is,

Fi = {X = ci }.
Then by E2,

E
(
Y | Fi , info

) = g(ci ),

and by E5,
E

(
Y | info

) =
∑

i

g(ci )P
(
Fi | info

)
.

More succinctly,

(E5) E
(
g(X) | info

) =
∑

i

g(ci )P
(
X = ci | info

)
.
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In particular,

(E5)′ E
(
X | info

) =
∑

i

ciP
(
X = ci | info

)
.

I will refer to these results as new rules for expectations, even though they are consequences
of the other rules. They apply to random variables that take values in the “discrete set”
{c1, c2, . . .}. If the range of values includes an interval of real numbers, an approximation
argument (see Chapter 6) replaces sums by integrals.

Remark. If we extend E1 to sums of more than two random variables, we get a
collection of rules that includes the probability rules P1 through P5 as special cases.
The derivation makes use of the indicator function of an event, defined by

IA =
{

1 if the event A occurs,
0 if the event Ac occurs.

Rule E4 with F1 = A and F2 = Ac gives

E
(
IA | info

) = E
(
IA | A, info

)
P (A | info) + E

(
IA | Ac, info

)
P (Ac | info)

= 1 × P (A | info) + 0 × P (Ac | info) by E2.

That is, E
(
IA | info

) = P (A | info).

If an event A is a disjoint union of events A1, A2, . . . then IA = IA1 + IA2 + . . ..
(Why?) Taking expectations then invoking the extended E1, we get rule P4.

As an exercise, you might try to derive the other probability rules, but don’t
spend much time on the task or worry about it too much. Just keep buried some-
where in the back of your mind the idea that you can do more with expectations
than with probabilities alone.

You will find it useful to remember that E
(
IA | info

) = P (A | info), a result that
is easy to reconstruct from the fact that the long-run frequency of occurrence of an
event, over many repetitions, is just the long-run average of its indicator function.

The calculation of an expectation is often a good way to get a rough feel for the be-
haviour of a random process, but it doesn’t tell the whole story.

Example 2: Expected number of tosses to get TTHH with fair coin is 16.

By similar arguments (see Homework Sheet 2), you can show that the expected number
of tosses needed to get hhh, without competition, is 14. The expected number of tosses for
the completion of the game with competition between hhh and tthh is 91/3. Notice that theSee HHH.TTHH.R,

the R script for calculations. expected value for the game with competition is smaller than the minimum of the expected
values for the two games. Why must it be smaller?

It is helpful to remember expectations for a few standard mechanisms, such as coin
tossing, rather than have to rederive them repeatedly.

Example 3: Expected value for the geometric(p) distribution is 1/p.

Probabilists study standard mechanisms, and establish basic results for them, partly in
the hope that they will recognize those same mechanisms buried in other problems. In that
way, unnecessary calculation can be avoided, making it easier to solve more complex prob-
lems. It can, however, take some work to find the hidden mechanism.

Example 4: [Coupon collector problem] In order to encourage consumers to buy
many packets of cereal, a manufacurer includes a Famous Probabilist card in each
packet. There are 10 different types of card: Chung, Feller, Lévy, Kolmogorov,
. . . , Doob. Suppose that I am seized by the desire to own at least one card of
each type. What is the expected number of packets that I need to buy in order to
achieve my goal?
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For the coupon collectors problem I assumed large numbers of cards of each type, in
order to justify the analogy with coin tossing. Without that assumption the depletion of
cards from the population would have a noticeable effect on the proportions of each type
remaining after each purchase. The next example illustrates the effects of sampling from a
finite population without replacement, when the population size is not assumed very large.

The example also provides an illustration of the method of indicators, whereby a ran-
dom variable is expressed as a sum of indicator variables IA1 + IA2 + . . ., in order to reduce
calculation of an expected value to separate calculation of probabilities PA1, PA2, . . . . Re-
member the formula

E
(
IA1 + IA2 + . . . | info

) = E
(
IA1 | info

) + E
(
IA2 | info

) + . . .

= P
(

A1 | info
) + P

(
A2 | info

) + . . .

Example 5: Suppose an urn contains r red balls and b black balls, all balls identi-
cal except for color. Suppose balls are removed from the urn one at a time, with-
out replacement. Assume that the person removing the balls selects them at ran-
dom from the urn: if k balls remain then each has probability 1/k of being cho-
sen. Show that the expected number of red balls removed before the first black
ball equals r/(b + 1).

Compare the solution r/(b + 1) with the result for sampling with replacement, where
the number of draws required to get the first black would have a geometric(b/(r + b)) distri-
bution. With replacement, the expected number of reds removed before the first black would
be

(b/(r + b))−1 − 1 = r/b.

Replacement of balls after each draw increases the expected value slightly. Does that make
sense?

The classical gambler’s ruin problem was solved by Abraham de Moivre over two hun-
dred years ago, using a method that has grown into one of the main technical tools of mod-
ern probability. The solution makes an elegant application of conditional expectations.

Example 6: Suppose two players, Alf and Betamax, bet on the tosses of a fair
coin: for a head, Alf pays Betamax one dollar; for a tail, Betamax pays Alf one
dollar. The stop playing when one player runs out of money. If Alf starts with α

dollar bills, and Betamax starts with β dollars bills (both α and β whole numbers),
what is the probability that Alf ends up with all the money?

De Moivre’s method also works with biased coins, if we count profits in a different
way—an even more elegant application of conditional expectations.

Example 7: Same problem as in Example 6, except that the coin they toss has
probability p �= 1/2 of landing heads. (Could be skipped.)

Things to remember

• Expectations (and conditional expectations) are linear (E1), increasing (E3) functions of
random variables, which can be calculated as weighted averages of conditional expecta-
tions,

E
(
X | info

) = ∑
i E

(
X | Fi , info

)
P
(
Fi | info

)
,

where the disjoint events F1, F2, . . . cover all possibilities (the weights sum to one).
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• The indicator function of an event A is the random variable defined by

IA =
{

1 if the event A occurs,
0 if the event Ac occurs.

The expected value of an indicator variable, E (IA | info), is the same as the probability
of the corresponding event, P (A | info).

• As a consequence of the rules,

E
(
g(X) | info

) = ∑
i g(ci )P

(
X = ci | info

)
,

if X can take only values c1, c2, . . ..
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Examples for Chapter 2

<2.1> Example. Consider a situation—a bet if you will—where you stand to receive an uncer-
tain return X . You could think of X as a random variable, a real-valued function on a sam-
ple space S. For the moment forget about any probabilities on the sample space S. Suppose
you consider p(X) the fair price to pay in order to receive X . What properties must p(·)
have?

Your net return will be the random quantity X − p(X), which you should consider to
be a fair return. Unless you start worrying about the utility of money you should find the
following properties reasonable.

(i) fair + fair = fair. That is, if you consider p(X) fair for X and p(Y ) fair for Y then
you should be prepared to make both bets, paying p(X) + p(Y ) to receive X + Y .

(ii) constant × fair = fair. That is, you shouldn’t object if I suggest you pay 2p(X) to
receive 2X (actually, that particular example is a special case of (i)) or 3.76p(X) to
receive 3.76X , or −p(X) to receive −X . The last example corresponds to willing-
ness to take either side of a fair bet. In general, to receive cX you should pay cp(X),
for constant c.

(iii) There is no fair bet whose return X − p(X) is always ≥ 0 (except for the trivial
situation where X − p(X) is certain to be zero).

If you were to declare a bet with return X − p(X) ≥ 0 under all circumstances to be fair, I
would be delighted to offer you the opportunity to receive the “fair” return −C (X − p(X)),
for an arbitrarily large positive constant C . I couldn’t lose.

Fact 1: Properties (i), (ii), and (iii) imply that p(αX + βY ) = αp(X) + βp(Y ) for all
random variables X and Y , and all constants α and β.

Consider the combined effect of the following fair bets:

you pay me αp(X) to receive αX

you pay me βp(Y ) to receive βY

I pay you p(αX + βY ) to receive (αX + βY ).

Your net return is a constant,

c = p(αX + βY ) − αp(X) − βp(Y ).

If c > 0 you violate (iii); if c < 0 take the other side of the bet to violate (iii). The asserted
equality follows.

Fact 2: Properties (i), (ii), and (iii) imply that p(Y ) ≤ p(X) if the random variable Y is
always ≤ the random variable X .

If you claim that p(X) < p(Y ) then I would be happy for you to accept the bet that
delivers

(Y − p(Y )) − (X − p(X)) = −(X − Y ) − (p(Y ) − p(X)) ,

which is always < 0.

The two Facts are analogous to rules E1 and E3 for expectations. You should be able to
deduce the analog of E2 from (iii).

As a special case, consider the bet that returns 1 if an event F occurs, and 0 otherwise.
If you identify the event F with the random variable taking the value 1 on F and 0 on Fc

(that is, the indicator of the event F), then it follows directly from Fact 1 that p(·) is addi-
tive: p(F1 ∪ F2) = p(F1) + p(F2) for disjoint events F1 and F2, an analog of rule P4 for
probabilities.
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Contingent bets

Things become much more interesting if you are prepared to make a bet to receive an
amount X , but only when some event F occurs. That is, the bet is made contingent on
the occurrence of F . Typically, knowledge of the occurrence of F should change the fair
price, which we could denote by p(X | F). Let me write Z for the indicator function of the
event F , that is,

Z =
{

1 if event F occurs
0 otherwise

Then the net return from the contingent bet is (X − p(X | F)) Z . The indicator function Z
ensures that money changes hands only when F occurs.

By combining various bets and contingent bets, we can deduce that an analog of rule
E4 for expectations: if S is partitioned into disjoint events F1, . . . , Fk , then

p(X) =
k∑

i=1

p(Fi )p(X | Fi ).

Make the following bets. Write ci for p(X | Fi ).

(a) For each i , pay ci p(Fi ) in order to receive ci if Fi occurs.

(b) Pay −p(X) in order to receive −X .

(c) For each i , make a bet contingent on Fi : pay ci (if Fi occurs) to receive X .

If event Fk occurs, your net profit will be

−
∑

i

ci p(Fi ) + ck + p(X) − X − ck + X = p(X) −
∑

i

ci p(Fi ),

which does not depend on k. Your profit is always the same constant value. If the constant
were nonzero, requirement (iii) for fair bets would be violated.

If you rewrite p(X) as the expected value EX , and p(F) as PF for an event F ,
and E(X | F) for p(X | F), you will see that the properties of fair prices are completely
analogous to the rules for probabilities and expectations. Some authors take the bold step of
interpreting probability theory as a calculus of fair prices. The interpretation has the virtue
that it makes sense in some situations where there is no reasonable way to imagine an un-
limited sequence of repetions from which to calculate a long-run frequency or average.

See Bruno de Finetti, Theory of Probability, Vol. 1, (Wiley, New York), for a detailed
discussion of expectations as fair prices. �

<2.2> Example. The “HHH versus TTHH” Example in Chapter 1 solved the following prob-
lem:

Imagine that I have a fair coin, which I toss repeatedly. Two players, M and
R, observe the sequence of tosses, each waiting for a particular pattern on
consecutive tosses: M waits for hhh, and R waits for tthh. The one whose
pattern appears first is the winner. What is the probability that M wins?

The answer—that M has probability 5/12 of winning—is slightly surprising, because, at
first sight, a pattern of four appears harder to achieve than a pattern of three.

A calculation of expected values will add to the puzzlement. As you will see, if the
game is continued until each player sees his pattern, it takes tthh longer (on average) to ap-
pear than it takes hhh to appear. However, when the two patterns are competing, the tthh
pattern is more likely to appear first. How can that be?

For the moment forget about the competing hhh pattern: calculate the expected num-
ber of tosses needed before the pattern tthh is obtained with four successive tosses. That
is, if we let X denote the number of tosses required then the problem asks for the expected
value EX .
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S T TT TTH TTHH

The Markov chain diagram keeps track of the progress from the starting state (la-
belled S) to the state TTHH where the pattern is achieved. Each arrow in the diagram cor-
responds to a transition between states with probability 1/2. The corresponding transition
matrix is:

P =

⎛
⎜⎜⎜⎜⎝

S T TT TTH TTHH

S 1/2 1/2 0 0 0
T 1/2 0 1/2 0 0
TT 0 0 1/2 1/2 0
TTH 0 1/2 0 0 1/2
TTHH 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠.

Once again it is easier to solve not just the original problem, but a set of problems, one
for each starting state. Let

ES = E(X | start at S)

EH = E(X | start at H)

...

Then the original problem is asking for the value of ES .

Condition on the outcome of the first toss, writing H for the event {first toss lands
heads} and T for the event {first toss lands tails}. From rule E4 for expectations,

ES = E(X | start at S, T)P(T | start at S) + E(X | start at S, H)P(H | start at S)

Both the conditional probabilities equal 1/2 (“fair coin”; probability does not depend on the
state). For the first of the conditional expectations, count 1 for the first toss, then recognize
that the remaining tosses are just those needed to reach TTHH starting from the state T :

E(X | start at S, T) = 1 + E(X | start at T)

Don’t forget to count the first toss. An analogous argument leads to an analogous expression
for the second conditional expectation. Substitution into the expression for ES then gives

ES = 1/2(1 + ET ) + 1/2(1 + ES)

Similarly,

ET = 1/2(1 + ET T ) + 1/2(1 + ES)

ET T = 1/2(1 + ET T ) + 1/2(1 + ET T H )

ET T H = 1/2(1 + 0) + 1/2(1 + ET )

What does the zero in the last equation represent?

The four linear equations in four unknowns have the solution ES = 16, ET = 14,
ET T = 10, ET T H = 8. Thus, the solution to the original problem is that the expected num-
ber of tosses to achieve the tthh pattern is 16. See the R script HHH.TTHH.R for a way to
automate the solution. �

<2.3> Example. For independent coin tossing, what is the expected number of tosses to get the
first head?

Suppose the coin has probability p > 0 of landing heads. (So we are actually calculat-
ing the expected value for the geometric(p) distribution.) I will present two methods.
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Method A.

Condition on whether the first toss lands heads (H) or tails (T). With X defined as the num-
ber of tosses until the first head,

EX = E(X | H)PH + E(X | T )PT

= (1)p + (1 + EX)(1 − p).

The reasoning behind the equality

E(X | T ) = 1 + EX

is: After a tail we are back where we started, still counting the number of tosses until a
head, except that the first tail must be included in that count.

Solving the equation for EX we get

EX = 1/p.

Does this answer seem reasonable? (Is it always at least 1? Does it increase as p increases?
What happens as p tends to zero or one?)

Method B.

By the formula E5,

EX =
∞∑

k=1

k(1 − p)k−1 p.

There are several cute ways to sum this series. Here is my favorite. Write q for 1− p. Write
the kth summand as a a column of k terms pqk−1, then sum by rows:

EX = p + pq + pq2 + pq3 + . . .

+pq + pq2 + pq3 + . . .

+pq2 + pq3 + . . .

+pq3 + . . .

...
Each row is a geometric series.

EX = p/(1 − q) + pq/(1 − q) + pq2/(1 − q) + . . .

= 1 + q + q2 + . . .

= 1/(1 − q)

= 1/p,

same as before. �

<2.4> Example. In order to encourage consumers to buy many packets of cereal, a manufacurer
includes a Famous Probabilist card in each packet. There are 10 different types of card:
Chung, Feller, Lévy, Kolmogorov, . . . , Doob. Suppose that I am seized by the desire to own
at least one card of each type. What is the expected number of packets that I need to buy in
order to achieve my goal?

Assume that the manufacturer has produced enormous numbers of cards, the same num-
ber for each type. (If you have ever tried to collect objects of this type, you might doubt the
assumption about equal numbers. But, without it, the problem becomes exceedingly diffi-
cult.) The assumption ensures, to a good approximation, that the cards in different packets
are independent, with probability 1/10 for a Chung, probability 1/10 for a Feller, and so on.

The high points in my life occur at random “times” T1, T1 + T2, . . . , T1 + T2 + . . .+ T10,
when I add a new type of card to my collection: After one card (that is, T1 = 1) I have
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my first type; after another T2 cards I will get something different from the first card; after
another T3 cards I will get a third type; and so on.

The question asks for E(T1 + T2 + . . . + T10), which rule E1 (applied repeatedly) reex-
presses as ET1 + ET2 + . . . + ET10.

The calculation for ET1 is trivial because T1 must equal 1: we get ET1 = 1 by rule
E2. Consider the mechanism controlling T2. For concreteness suppose the first card was a
Doob. Each packet after the first is like a coin toss with probability 9/10 of getting a head
(= a nonDoob), with T2 like the number of tosses needed to get the first head. Thus

T2 has a geometric(9/10) distribution.

Deduce from Example 3 that ET2 = 10/9, which is slightly larger than 1.

Now consider the mechanism controlling T3. Condition on everything that was observed
up to time T1 + T2. Under the assumption of equal abundance and enormous numbers of
cards, most of this conditioning information is acually irrelevent; the mechanism control-
ling T3 is independent of the past information. (Hard question: Why would the T2 and T3

mechanisms not be independent if the cards were not equally abundant?) So what is that T3

mechanism? I am waiting for any one of the 8 types I have not yet collected. It is like coin
tossing with probability 8/10 of heads:

T3 has geometric (8/10) distribution,

and thus ET3 = 10/8. And so on, leading to

ET1 + ET2 + . . . + ET10 = 1 + 10/9 + 10/8 + ... + 10/1 ≈ 29.3.

I should expect to buy about 29.3 packets to collect all ten cards. �

Note: The independence between packets was not needed to justify the appeal to
rule E1, to break the expected value of the sum into a sum of expected values. It did allow
us to recognize the various geometric distributions without having to sort through possible
effects of large T2 on the behavior of T3, and so on.

You might appreciate better the role of independence if you try to solve a similar (but
much harder) problem with just two sorts of card, not in equal proportions.

<2.5> Example. Suppose an urn contains r red balls and b black balls, all balls identical ex-
cept for color. Suppose balls are removed from the urn one at a time, without replacement.
Assume that the person removing the balls selects them at random from the urn: if k balls
remain then each has probability 1/k of being chosen. Show that the expected number of red
balls removed before the first black ball equals r/(b + 1).

The problem might at first appear to require nothing more than a simple application of
rule E5′ for expectations. We shall see. Let T be the number of reds removed before the
first black. Find the distribution of T , then appeal to E5′ to get

ET =
∑

k

kP{T = k}.

Sounds easy enough. We have only to calculate the probabilities P{T = k}.
Define Ri = {i th ball red} and Bi = {i th ball black}. The possible values for T are

0, 1, . . . , r . For k in this range,

P{T = k} = P{first k balls red, (k+1)st ball is black}
= P(R1 R2 . . . Rk Bk+1)

= (PR1)P(R2 | R1)P(R3 | R1 R2) . . . P(Bk+1 | R1 . . . Rk)

= r

r + b
.

r − 1

r + b − 1
. . .

b

r + b − k
.

The dependence on k is fearsome. I wouldn’t like to try multiplying by k and summing. If
you are into pain you might try to continue this line of argument. Good luck.
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There is a much easier way to calculate the expectation, by breaking T into a sum of
much simpler random variables for which E5′ is trivial to apply. This approach is sometimes
called the method of indicators.

Suppose the red balls are labelled 1, . . . , r . Let Ti equal 1 if red ball number i is sam-
pled before the first black ball. (Be careful here. The black balls are not thought of as num-
bered. The first black ball is not a ball bearing the number 1; it might be any of the b black
balls in the urn.) Then T = T1+. . .+Tr . By symmetry—it is assumed that the numbers have
no influence on the order in which red balls are selected—each Ti has the same expectation.
Thus

ET = ET1 + . . . + ETr = rET1.

For the calculation of ET1 we can ignore most of the red balls. The event {T1 = 1} occurs
if and only if red ball number 1 is drawn before all b of the black balls. By symmetry, the
event has probability 1/(b + 1). (If b + 1 objects are arranged in random order, each object
has probability 1/(1 + b) of appearing first in the order.)

Remark. If you are not convinced by the appeal to symmetry, you might find it
helpful to consider a thought experiment where all r + b balls are numbered and they
are removed at random from the urn. That is, treat all the balls as distinguishable
and sample until the urn is empty. (You might find it easier to follow the argument
in a particular case, such as all 120 = 5! orderings for five distinguishable balls, 2 red
and 3 black.) The sample space consists of all permutations of the numbers 1 to r+b.
Each permutation is equally likely. For each permutation in which red 1 precedes all
the black balls there is another equally likely permutation, obtained by interchanging
the red ball with the first of the black balls chosen; and there is an equally likely per-
mutation in which it appears after two black balls, obtained by interchanging the red
ball with the second of the black balls chosen; and so on. Formally, we are partition-
ing the whole sample space into equally likely events, each determined by a relative
ordering of red 1 and all the black balls. There are b + 1 such equally likely events,
and their probabilities sum to one.

Now it is easy to calculate the expected value for red 1.

ET1 = 0 P{T1 = 0} + 1 P{T1 = 1} = 1/(b + 1)

The expected number of red balls removed before the first black ball is equal to r/(b + 1).
�

<2.6> Example. Suppose two players, Alf (A for short) and Betamax (B for short), bet on the
tosses of a fair coin: for a head, Alf pays Betamax one dollar; for a tail, Betamax pays Alf
one dollar. They stop playing when one player runs out of money. If Alf starts with α dol-
lar bills, and Betamax starts with β dollars bills (both α and β whole numbers), what is the
probability that Alf ends up with all the money?

Write Xn for the number of dollars held by A after n tosses. (Of course, once the game
ends the value of Xn stays fixed from then on, at either a + b or 0, depending on whether
A won or not.) It is a random variable taking values in the range {0, 1, 2, . . . , a + b}. We
start with X0 = α. To solve the problem, calculate EXn , for very large n in two ways, then
equate the answers. We need to solve for the unknown θ = P{A wins}.

First calculation

Invoke rule E4 with the sample space broken into three pieces,

An = {A wins at, or before, the nth toss},
Bn = {B wins at, or before, the nth toss},
Cn = {game still going after the nth toss}.
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For very large n the game is almost sure to be finished, with PAn ≈ θ , PBn ≈ 1 − θ , and
PCn ≈ 0. Thus

EXn = E(Xn | An)PAn + E(Xn | Bn)PBn + E(Xn | Cn)PCn

≈ (
(α + β) × θ

) + (
0 × (1 − θ)

) + (
(something) × 0

)
.

The error in the approximation goes to zero as n goes to infinity.

Second calculation

Calculate conditionally on the value of Xn−1. That is, split the sample space into disjoint
events Fk = {Xn−1 = k}, for k = 0, 1, . . . , a + b, then works towards another appeal to rule
E4. For k = 0 or k = a + b, the game will be over, and Xn must take the same value as
Xn−1. That is,

E(Xn | F0) = 0 and E(Xn | Fα+β) = α + β.

For values of k between the extremes, the game is still in progress. With the next toss, A’s
fortune will either increase by one dollar (with probability 1/2) or decrease by one dollar
(with probability 1/2). That is, for k = 1, 2, . . . , α + β − 1,

E(Xn | Fk) = 1/2(k + 1) + 1/2(k − 1) = k.

Now invoke E4.

E(Xn) = 0 × PF0 + 1 × PF1 + . . . + (a + b)PFα+β.

Compare with the direct application of E5′ to the calculation of E Xn−1:

E(Xn−1) = (
0 × P{Xn−1 = 0}) + (

1 × P{Xn−1 = 1}) + . . . + (
(α + β) × P{Xn−1 = α + β}) ,

which is just another way of writing the sum for EXn derived above. Thus we have

EXn = EXn−1

The expected value doesn’t change from one toss to the next.

Follow this fact back through all the previous tosses to get

EXn = EXn−1 = EXn−2 = . . . = EX2 = EX1 = EX0.

But X0 is equal to α, for certain, which forces EX0 = α.

Putting the two answers together

We have two results: EXn = α, no matter how large n is; and EXn gets arbitrarily close to
θ(α+β) as n gets larger. We must have α = θ(α+β). That is, Alf has probability α/(α+β)

of eventually winning all the money. �

Remark. Twice I referred to the sample space, without actually having to de-
scribe it explicitly. It mattered only that several conditional probabilities were deter-
mined by the wording of the problem.

<2.7> Example. Same problem as in Example 6, except that the coin they toss has probability
p �= 1/2 of landing heads.

The cases p = 0 and p = 1 are trivial. So let us assume that 0 < p < 1 (and p �= 1/2).
Essentially De Moivre’s idea was that we could use almost the same method as in Exam-
ple 6 if we kept track of A’s fortune on a geometrically expanding scaled. For some number
s, to be specified soon, consider a new random variable Zn = s Xn .
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Once again write θ for P{A wins}, and give the events An , Bn , and Cn the same mean-
ing as in Example 6.

As in the first calculation for the other Example, we have

EZn = E(s Xn | An)PAn + E(s Xn | Bn)PBn + E(s Xn | Cn)PCn

≈ (
sα+β × θ

) + (
s0 × (1 − θ)

) + (
(something) × 0

)
if n is very large.

For the analog of the second calculation, in the cases where the game has ended by at
or before the (n − 1)st toss we have

E(Zn | Xn−1 = 0) = s0 and E(Zn | Xn−1 = α + β) = sα+β.

For 0 < k < α + β, the result of the calculation is slightly different.

E(Zn | Xn−1 = k) = psk+1 + (1 − p)sk−1 = (
ps + (1 − p)s−1

)
sk .

If we choose s = (1 − p)/p, the factor
(

ps + (1 − p)s−1
)

becomes 1. Invoking rule E4 we
then get

EZn = E(Zn | Xn−1 = 0) × P(Xn−1 = 0) + E(Zn | Xn−1 = 1) × P(Xn−1 = 1)

+ . . . + E(Zn | Xn−1 = α + β) × P(Xn−1 = α + β)

= s0 × P(Xn−1 = 0) + s1 × P(Xn−1 = 1) + . . . + sα+β × P(Xn−1 = α + β)

Compare with the calculation of EZn−1 via E5.

EZn−1 = E(s Xn−1 | Xn−1 = 0) × P(Xn−1 = 0) + E(s Xn−1 | Xn−1 = 1) × P(Xn−1 = 1)

+ . . . + E(s Xn−1 | Xn−1 = α + β) × P(Xn−1 = α + β)

= s0 × P(Xn−1 = 0) + s1 × P(Xn−1 = 1) + . . . + sα+β × P(Xn−1 = α + β)

Once again we have a situation where EZn stays fixed at the initial value EZ0 = sα ,
but, with very large n, it can be made arbitrarily close to θsα+β + (1 − θ)s0. Equating the
two values, we deduce that

P{Alf wins} = θ = 1 − sα

1 − sα+β
where s = (1 − p)/p.

What goes wrong with this calculation if p = 1/2? As a check we could let p tend
to 1/2, getting

1 − sα

1 − sα+β
= (1 − s)(1 + s + . . . + sα−1)

(1 − s)(1 + s + . . . + sα+β−1)
for s �= 1

= 1 + s + . . . + sα−1

1 + s + . . . + sα+β−1

→ α

α + β
as s → 1.

Comforted? �
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