Solution to HW 1.4

The set $\overline{\mathbb{R}}=\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ is called the extended real line. Write \mathcal{A} for the sigmafield on $\overline{\mathbb{R}}$ generated by $\mathcal{B}(\mathbb{R})$ together with the two singleton sets $\{-\infty\}$ and $\{\infty\}$.
Show that \mathcal{A} is also generated by $\mathcal{E}=\{[-\infty, t]: t \in \mathbb{R}\}$.
Let me abbreviate $\mathcal{B}(\mathcal{R})$ to \mathcal{B} and write \mathcal{F} for $\{\{-\infty\},\{+\infty\}\} \cup \mathcal{B}$. There are two notational subtleties to be careful about. For a subset A of \mathbb{R}, should A^{c} refer to $\mathbb{R} \backslash A$ or $\overline{\mathbb{R}} \backslash A$? It is better to avoid the A^{c} notation for this problem. Also, if \mathcal{D} is a collection of subsets of \mathbb{R}, should $\sigma(\mathcal{D})$ refer to a sigma-field on \mathbb{R} or a sigma-field on $\overline{\mathbb{R}}$? To avoid ambiguity, let $\bar{\sigma}(\mathcal{D})$ denote the smallest sigma-field $\overline{\mathcal{A}}$ on $\overline{\mathbb{R}}$ for which $\mathcal{D} \subseteq \overline{\mathcal{A}}$ and $\sigma(\mathcal{D})$ denote the smallest sigma-field \mathcal{A} on \mathbb{R} for which $\mathcal{D} \subseteq \mathcal{A}$. For example, $\sigma(\mathcal{B})=\mathcal{B} \neq \bar{\sigma}(\mathcal{B})$.

In order to prove that $\bar{\sigma}(\mathcal{E})=\bar{\sigma}(\mathcal{F})$ it suffices to prove $\mathcal{F} \subseteq \bar{\sigma}(\mathcal{E})$ and $\mathcal{E} \subseteq \bar{\sigma}(\mathcal{F})$.
One inclusion is easy: for each real t,

$$
[-\infty, t]=\{-\infty\} \cup(-\infty, t]
$$

a union of two sets in the sigma-field $\bar{\sigma}(\mathcal{F})$. Thus $\mathcal{E} \subseteq \bar{\sigma}(\mathcal{F})$.
For the other inclusion, first note that

$$
\begin{aligned}
& \{-\infty\}=\cap_{n \in \mathbb{N}}[-\infty,-n] \in \bar{\sigma}(\mathcal{E}) \\
& \{+\infty\}=\left(\cup_{n \in \mathbb{N}}[-\infty, n]\right)^{c} \in \bar{\sigma}(\mathcal{E})
\end{aligned}
$$

To show that $\mathcal{B} \subseteq \bar{\sigma}(\mathcal{E})$ argue indirectly. Define

$$
\mathcal{B}_{0}=\{B \in \mathcal{B}: B \in \bar{\sigma}(\mathcal{E})\}=\mathcal{B} \cap \bar{\sigma}(\mathcal{E}) .
$$

If $B \in \mathcal{B}_{0}$ then the fact that \mathcal{B} is a sigma-field on \mathbb{R} implies that $\mathbb{R} \backslash B \in \mathcal{B}$. Also $\mathbb{R} \backslash B=(\overline{\mathbb{R}} \backslash B) \cap\{\{-\infty\},\{+\infty\}\}^{c} \in \bar{\sigma}(\mathcal{E})$. Thus $\mathbb{R} \backslash B \in \mathcal{B}_{0}$.

If $\left\{B_{i}: i \in \mathbb{N}\right\} \subseteq \mathcal{B}_{0}$ then $\cup_{i} B_{i}$ is a member of \mathcal{B} (because \mathcal{B} is a sigma-field on \mathbb{R}) and a member of the sigma-field $\bar{\sigma}(\mathcal{E})$ on $\overline{\mathbb{R}}$. That is, $\cup_{i} B_{i} \in \mathcal{B}_{0}$. Thus \mathcal{B}_{0} is a sigma-field on \mathbb{R}. (Should I also check that $\emptyset \in \mathcal{B}_{0}$?)

Finally, note that

$$
\mathcal{B}_{0} \supseteq \mathcal{E}_{0}=\{(-\infty, t]: t \in \mathbb{R}\}
$$

because $(-\infty, t] \in \mathcal{B}$ and $(-\infty, t]=[-\infty, t] \cap\{-\infty\}^{c} \in \bar{\sigma}(\mathcal{E})$. It follows that

$$
\mathcal{B}=\sigma\left(\mathcal{E}_{0}\right) \subseteq \sigma\left(\mathcal{B}_{0}\right)=\mathcal{B}_{0}
$$

so that $\mathcal{B} \subseteq \bar{\sigma}(\mathcal{E})$.

