Solution to HW 1.4

The set $\overline{\mathbb{R}} = \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$ is called the **extended real line**. Write \mathcal{A} for the sigmafield on $\overline{\mathbb{R}}$ generated by $\mathcal{B}(\mathbb{R})$ together with the two singleton sets $\{-\infty\}$ and $\{\infty\}$. Show that \mathcal{A} is also generated by $\mathcal{E} = \{[-\infty, t] : t \in \mathbb{R}\}.$

Let me abbreviate $\mathcal{B}(\mathcal{R})$ to \mathcal{B} and write \mathcal{F} for $\{\{-\infty\}, \{+\infty\}\} \cup \mathcal{B}$. There are two notational subtleties to be careful about. For a subset A of \mathbb{R} , should A^c refer to $\mathbb{R}\setminus A$ or $\mathbb{R}\setminus A$? It is better to avoid the A^c notation for this problem. Also, if \mathcal{D} is a collection of subsets of \mathbb{R} , should $\sigma(\mathcal{D})$ refer to a sigma-field on \mathbb{R} or a sigma-field on \mathbb{R} ? To avoid ambiguity, let $\overline{\sigma}(\mathcal{D})$ denote the smallest sigma-field \overline{A} on \mathbb{R} for which $\mathcal{D} \subseteq \overline{A}$ and $\sigma(\mathcal{D})$ denote the smallest sigma-field A on \mathbb{R} for example, $\sigma(\mathcal{B}) = \mathcal{B} \neq \overline{\sigma}(\mathcal{B})$.

In order to prove that $\overline{\sigma}(\mathcal{E}) = \overline{\sigma}(\mathcal{F})$ it suffices to prove $\mathcal{F} \subseteq \overline{\sigma}(\mathcal{E})$ and $\mathcal{E} \subseteq \overline{\sigma}(\mathcal{F})$.

One inclusion is easy: for each real t,

$$[-\infty, t] = \{-\infty\} \cup (-\infty, t],$$

a union of two sets in the sigma-field $\overline{\sigma}(\mathfrak{F})$. Thus $\mathcal{E} \subseteq \overline{\sigma}(\mathfrak{F})$.

For the other inclusion, first note that

$$\{-\infty\} = \bigcap_{n \in \mathbb{N}} [-\infty, -n] \in \overline{\sigma}(\mathcal{E}) \\ \{+\infty\} = \left(\bigcup_{n \in \mathbb{N}} [-\infty, n] \right)^c \in \overline{\sigma}(\mathcal{E})$$

To show that $\mathcal{B} \subseteq \overline{\sigma}(\mathcal{E})$ argue indirectly. Define

$$\mathcal{B}_0 = \{ B \in \mathcal{B} : B \in \overline{\sigma}(\mathcal{E}) \} = \mathcal{B} \cap \overline{\sigma}(\mathcal{E}).$$

If $B \in \mathcal{B}_0$ then the fact that \mathcal{B} is a sigma-field on \mathbb{R} implies that $\mathbb{R} \setminus B \in \mathcal{B}$. Also $\mathbb{R} \setminus B = (\overline{\mathbb{R}} \setminus B) \cap \{\{-\infty\}, \{+\infty\}\}^c \in \overline{\sigma}(\mathcal{E})$. Thus $\mathbb{R} \setminus B \in \mathcal{B}_0$.

If $\{B_i : i \in \mathbb{N}\} \subseteq \mathcal{B}_0$ then $\cup_i B_i$ is a member of \mathcal{B} (because \mathcal{B} is a sigma-field on \mathbb{R}) and a member of the sigma-field $\overline{\sigma}(\mathcal{E})$ on \mathbb{R} . That is, $\cup_i B_i \in \mathcal{B}_0$. Thus \mathcal{B}_0 is a sigma-field on \mathbb{R} . (Should I also check that $\emptyset \in \mathcal{B}_0$?)

Finally, note that

$$\mathcal{B}_0 \supseteq \mathcal{E}_0 = \{(-\infty, t] : t \in \mathbb{R}\}$$

because $(-\infty, t] \in \mathcal{B}$ and $(-\infty, t] = [-\infty, t] \cap \{-\infty\}^c \in \overline{\sigma}(\mathcal{E})$. It follows that

$$\mathcal{B} = \sigma(\mathcal{E}_0) \subseteq \sigma(\mathcal{B}_0) = \mathcal{B}_0$$

so that $\mathcal{B} \subseteq \overline{\sigma}(\mathcal{E})$.