Statistics 330b/600b, spring 2010 Homework # 1 Due: Thursday 21 January

Please attempt at least the starred problems.

- *[1] Suppose \mathcal{A} is a sigma-field of subsets of \mathfrak{X} and \mathfrak{N} is a set of subsets of \mathfrak{X} that is stable under countable unions. Define $\mathcal{B} := \{B \subseteq \mathfrak{X} : B\Delta A \subseteq N \text{ for some } A \in \mathcal{A} \text{ and } N \in \mathfrak{N}\}$. Show that \mathcal{B} is a sigma-field.
- *[2] Let $\Omega = \{0,1\}^{\mathbb{N}}$. For each n in \mathbb{N} let \mathcal{C}_n denote the set of subsets of Ω that are cylinder sets with base in $\{0,1\}^n$, that is, sets of the form

 $C = \{ \omega \in \Omega : (\omega_1, \dots, \omega_n) \in A \}$ for some $A \in \{0, 1\}^n$.

(Note that $\#\mathcal{C}_n = 2^n$.) Define $\mathcal{E} = \bigcup_{n \in \mathbb{N}} \mathcal{C}_n$.

- (i) Show that \mathcal{E} is a field of subsets of Ω . (That is, $\emptyset \in \mathcal{E}$ and \mathcal{E} is stable under complements and finite unions.)
- (ii) If $E = \{\omega \in \Omega : (\omega_1, \dots, \omega_n) \in A\} \in \mathcal{E}$ define $\mathbb{P}E = \#A/2^n$. Show that $\mathbb{P}E$ is the same for each possible representation of E as a cylinder set. Note: The ambiguity is: $E = \{\omega \in \Omega : (\omega_1, \dots, \omega_m) \in A \times \{0, 1\}^{m-n}\}$ for each m > n.
- (iii) Show that \mathbb{P} is a finitely additive measure on \mathcal{E} with $\mathbb{P}\Omega = 1$.
- (iv) Show that $\mathbb{P}E_n \downarrow 0$ for each decreasing sequence of sets $\{E_n\}$ in \mathcal{E} with $\cap_n E_n = \emptyset$.
- (v) Define $X_i(\omega) = \omega_i$ for $\omega = (\omega_1, \omega_2, ...) \in \Omega$. Show that each X_i is $\sigma(\mathcal{C}) \setminus \mathcal{B}(\mathbb{R})$ -measurable.
- (vi) Show that

$$\mathbb{P}\{X_1 \in A_1, \dots, X_n \in A_n\} = \prod_{i \le n} \mathbb{P}\{X_i \in A_i\} = 2^{-n} \quad \text{for each choice of } A_i \subseteq \{0, 1\}.$$

- (vii) Define $Y(\omega) = \sum_{i \in \mathbb{N}} 2^{-i} X_i(\omega)$. Show that $\mathbb{P}\{\omega : Y(\omega) \le y\} = y$ for each y in [0, 1]. Hint: Start with y a dyadic rational.
- *[3] Suppose T maps a set \mathfrak{X} into a set \mathfrak{Y} . For $B \subseteq \mathfrak{Y}$ define

$$T^{-1}B := \{ x \in \mathcal{X} : T(x) \in B \}.$$

For $A \subseteq \mathfrak{X}$ define $T(A) := \{T(x) : x \in A\}$. Some of the following assertions are true in general and some are false.

$T\left(\cup_{i} A_{i}\right) = \cup_{i} T(A_{i})$	and	$T^{-1}\left(\cup_i B_i\right) = \cup_i T^{-1}(B_i)$
$T\left(\cap_{i} A_{i}\right) = \cap_{i} T(A_{i})$	and	$T^{-1}\left(\cap_{i} B_{i}\right) = \cap_{i} T^{-1}(B_{i})$
$T\left(A^{c}\right) = \left(T\left(A\right)\right)^{c}$	and	$T^{-1}\left(B^{c}\right) = \left(T^{-1}\left(B\right)\right)^{c}$
$T^{-1}\left(T(A)\right) = A$	and	$T\left(T^{-1}(B)\right) = B$

Provide counterexamples for each of the false assertions.

[4] In class I asserted that $(\bigcup_{i \in I} A_i) \Delta(\bigcup_{i \in I} B_i) = \max_{i \in I} |A_i - B_i|$ but I only showed \leq . Give an example where equality fails.