Statistics 330b/600b, spring 2010 Homework # 10 Due: Thursday 15 April

For this sheet, suppose $(\Omega, \mathfrak{F}, \mathbb{P})$ and $(\mathfrak{T}, \mathfrak{B}, Q)$ are two probability spaces and T is an $\mathfrak{F}\backslash\mathfrak{B}$ -measurable map from Ω into \mathfrak{B} that has distribution Q.

- *[1] Let X be an integrable random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let \mathcal{G} be a sub-sigma-field of \mathcal{F} containing all \mathbb{P} -negligible sets. Suppose $\mathbb{P}(XW) = 0$ for every bounded random variable W for which $\mathbb{P}_{\mathcal{G}}W = 0$ almost surely. Show that X must be \mathcal{G} -measurable, by the following steps.
 - (i) If $F \in F$ and F = Z almost surely for some \mathcal{G} -measurable random variable Z, why must F actually belong to \mathcal{G} ?
 - (ii) Show that the set $T = \{t \in \mathbb{R} : \mathbb{P}\{X = t\} > 0\}$ is at worst countable.
 - (iii) For each fixed t in $\mathbb{R}\setminus T$ define $Z_t = \mathbb{P}_{\mathcal{G}}\{X > t\}$. Why must we have $0 \le Z_t \le 1$ almost surely?
 - (iv) For t as in the previous part, define $W_t = \{X > t\} Z_t$. Explain why $\mathbb{P}(X-t)W_t = 0$ and why $(X-t)W_t \ge 0$ almost surely. Deduce that $\{X > t\} \in \mathcal{G}$.
 - (v) Explain why X must be \mathcal{G} -measurable.
- [2] (convergence of normals) UGMTP Problem 9.11.
- *[3] Suppose X_n has a $N(\mu_n, \sigma_n^2)$ distribution, and $X_n \rightsquigarrow P$, for some probability measure P on $\mathcal{B}(\mathbb{R})$.
 - (i) Explain why there exists a finite constant M such that $\liminf \mathbb{P}\{|X_n| > M\} > 3/4$.
 - (ii) Explain why we must have $|\mu_n| \leq M$ and $\sigma_n \leq 8M/(3\sqrt{2\pi})$ eventually.
 - (iii) If $\mu_n \to \mu$ and $\sigma_n \to \sigma$ along some subsequence, explain why we must then have $P = N(\mu, \sigma^2)$.
 - (iv) Explain why μ_n and σ_n must converge to finite limits and why P must be some normal distribution (possibly degenerate).
 - (v) Now suppose (Y_n, Z_n) has a bivariate $N(\mu_n, V_n)$ distribution and $(Y_n, Z_n) \rightsquigarrow Q$ for some probability measure Q on $\mathcal{B}(\mathbb{R}^2)$. Use the univariate reult to explain Qmust be a bivariate normal distribution (possibly degenerate). Hint: What does Cauchy-Schwarz tell you about the off-diagonal terms of V_n ?
- [4] (truncated CLT) UGMTP Problem 7.21.