Statistics 330b/600b, spring 2010 Homework # 2 Due: Thursday 28 January

Please attempt at least the starred problems.

- *[1] Suppose T is a function from a set \mathfrak{X} into a set \mathfrak{Y} , which is equipped with a σ -field \mathfrak{B} . Recall that $\sigma(T) := \{T^{-1}B : B \in \mathfrak{B}\}$ is the smallest sigma-field on \mathfrak{X} for which T is $\sigma(T) \setminus \mathfrak{B}$ -measurable. Show that to each f in $\mathfrak{M}^+(\mathfrak{X}, \sigma(T))$ there exists a g in $\mathfrak{M}^+(\mathfrak{Y}, \mathfrak{B})$ such that $f = g \circ T$ (that is, f(x) = g(T(x)), for all x in \mathfrak{X}) by following these steps.
 - (i) If f is the indicator function of $T^{-1}(B)$ and g is the indictor function of B, show that $f = g \circ T$. Hint: If you write f as $\{x \in T^{-1}B\}$ and g as $\{y \in B\}$ there is hardly anything to prove.
 - (ii) Consider the case where $f \in \mathcal{M}^+_{\text{simple}}(\mathfrak{X}, \sigma(T))$.
 - (iii) Suppose $f_n = g_n \circ T$ is a sequence in $\mathcal{M}^+_{\text{simple}}(\mathfrak{X}, \sigma(T))$ that increases pointwise to f. Define $g(y) = \limsup g_n(y)$ for each y in \mathcal{Y} . Show that g has the desired property.
 - (iv) In part (ii), why can't we assume that $\lim g_n(y)$ exists for each y?
- *[2] Suppose $f_1, \ldots, f_k \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$ and $\theta_1, \ldots, \theta_k$ are strictly positive numbers that sum to one. Show that

$$\mu \prod\nolimits_{i \leq k} f_i^{\theta_i} \leq \prod\nolimits_{i \leq k} (\mu f_i)^{\theta_i}$$

by following these steps.

- (i) Explain why the inequality is trivially true if $\mu f_i = 0$ for at least one *i* or if $\mu f_i = \infty$ for at least one *i* (and all the other μf_j are strictly positive).
- (ii) Explain why there is no loss of generality in assuming that $\mu f_i = 1$ for each i and $f_i(x) < \infty$ for each x and i.
- (iii) For all $a_1, \ldots, a_k \in \mathbb{R}^+$, show that $\prod_{i \leq k} a_i^{\theta_i} \leq \sum_{i \leq k} \theta_i a_i$. Hint: First dispose of the trivial case where at least one a_i is zero, then rewrite the inequality using $b_i = \log a_i$.
- (iv) Complete the proof by considering the inequality from (iii) with $a_i = f_i(x)$.
- *[3] Suppose a set \mathcal{E} of subsets of \mathcal{X} cannot separate a particular pair of points x, y, that is, for every E in \mathcal{E} , either $\{x, y\} \subseteq E$ or $\{x, y\} \subseteq E^c$. Show that $\sigma(\mathcal{E})$ also cannot separate the pair.
- [4] The set $\overline{\mathbb{R}} = \{-\infty\} \cup \mathbb{R} \cup \{\infty\}$ is called the *extended real line*. Write \mathcal{A} for the sigma-field on $\overline{\mathbb{R}}$ generated by $\mathcal{B}(\mathbb{R})$ together with the two singleton sets $\{-\infty\}$ and $\{\infty\}$. Show that \mathcal{A} is also generated by $\mathcal{E} = \{[-\infty, t] : t \in \mathbb{R}\}$. Note: In this problem it is dangerous to write A^c for a subset A of \mathbb{R} because it might not be clear whether you mean $\mathbb{R} \setminus A$ or $\overline{\mathbb{R}} \setminus A$.