Statistics 330b/600b, spring 2010 Homework # 4 Due: Thursday 11 February

Please attempt at least the starred problems.

- *[1] Let λ denote the measure on \mathbb{R} with λA equal to the number of points in A (possibly infinite), and let $\mu A = \infty$ for all nonempty A. Show that λ has no density with respect to μ , even though both measures have the same negligible sets.
- *[2] Let ν and μ be finite measures on the sigma-field $\sigma(\mathcal{E})$ generated by a field \mathcal{E} . Suppose that for each $\epsilon > 0$ there exists a $\delta_{\epsilon} > 0$ such that $\nu E < \epsilon$ for each E in \mathcal{E} with $\mu E < \delta_{\epsilon}$. Show that ν is absolutely continuous with respect to μ , as measures on $\sigma(\mathcal{E})$, by the following steps.
 - (i) Suppose $\mu A = 0$ for an A in $\sigma(\mathcal{E})$. For each $\epsilon > 0$, use the result from UGMTP Example 2.5 to show that there exists an increasing sequence of sets $\{E_n\}$ in \mathcal{E} such that $A \subseteq G_{\epsilon} := \bigcup_{n \in \mathbb{N}} E_n$ and $\mu G_{\epsilon} < \delta_{\epsilon}$.
 - (ii) Deduce that $\nu A = 0$.
- *[3] Suppose X is a real-valued random variable with a Binomial (n, θ) distribution. That is, $\mathbb{P}\{X = k\} = \binom{n}{k} \theta^k (1 - \theta)^{n-k}$ for k = 0, 1, ..., n. You may assume these elementary facts: $\mathbb{P}X = n\theta$ and $\mathbb{P}(X - n\theta)^2 = n\theta(1 - \theta)$. Let f be a continuous real function defined on [0, 1].
 - (i) Show that $p_n(\theta) := \mathbb{P}f(X/n)$ is a polynomial in θ .
 - (ii) Explain why there exists a constant M and, for each $\epsilon > 0$, there exists a $\delta_{\epsilon} > 0$ for which

$$|f(x) - f(y)| \le \epsilon + M\{|x - y| > \delta_{\epsilon}\} \qquad \text{for all } x, y \text{ in } [0, 1].$$

(iii) Show that

$$|p_n(\theta) - f(\theta)| \le \mathbb{P}|f(X/n) - f(\theta)| \le \epsilon + \frac{M\theta(1-\theta)}{n\delta_{\epsilon}^2} < 2\epsilon \quad \text{if } n > M/(\epsilon\delta_{\epsilon}^2).$$

(iv) Conclude that for each $\epsilon > 0$ there exists a polynomial $p_{\epsilon}(\theta)$ for which

$$\sup_{0 \le \theta \le 1} |f(\theta) - p_{\epsilon}(\theta)| < \epsilon,$$

a result known as the Weierstrass approximation theorem.

[4] (completeness of \mathcal{L}^p or \mathcal{L}^{Ψ})) UGMTP Problem 2.19 or 2.23, not both.