Statistics 330b/600b, spring 2010 Homework # 5 Due: Thursday 18 February

Please attempt at least the starred problems.

- *[1] Suppose \mathcal{X} and \mathcal{Y} are topological spaces (or metric spaces, if you prefer) with collections of open sets $\mathcal{G}_{\mathcal{X}}$ and $\mathcal{G}_{\mathcal{Y}}$. Define $\mathcal{G}_{\mathcal{X}\times\mathcal{Y}}$ to consist of all those subsets of $\mathcal{X} \times \mathcal{Y}$ expressible as unions (not necessarily countable) of sets from $\mathcal{G}_{\mathcal{X}} \times \mathcal{G}_{\mathcal{Y}}$. Show that $\mathcal{B}(\mathcal{X} \times \mathcal{Y}) := \sigma(\mathcal{G}_{\mathcal{X}\times\mathcal{Y}}) \supseteq \mathcal{B}(\mathcal{X}) \otimes \mathcal{B}(\mathcal{Y})$.
- *[2] In class I discussed the Bayesian model where λ is a (prior) probability on (Θ, \mathcal{A}) and $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ is a set of probability measures defined on $(\mathfrak{X}, \mathcal{B})$. I assumed each P_{θ} is absolutely continuous with respect to some (sigma-finite) measure μ on $(\mathfrak{X}, \mathcal{A})$, with density $dP_{\theta}/d\mu = p(x, \theta)$ that is $\mathcal{B} \otimes \mathcal{A}$ -measurable.
 - (i) Define $\mathbb{P} = \lambda \otimes \mathcal{P}$, a probability measure on $\mathcal{B} \otimes \mathcal{A}$. Show that \mathbb{P} has density $p(x, \theta)$ with respect to $\lambda \otimes \mu$.
 - (ii) Define Q as the X-marginal of \mathbb{P} . That is, Q is the image of \mathbb{P} under the map T for which $T(x,\theta) = x$. Show that $dQ/d\mu = q(x) := \lambda^{\theta} p(x,\theta)$.
 - (iii) Show that $\mathbb{P}\{(x,\theta): q(x) = 0\} = Q\{x: q(x) = 0\} = 0.$
 - (iv) Define

$$p(\theta \mid x) = \begin{cases} p(x,\theta)/q(x) & \text{if } q(x) > 0\\ 1 & \text{if } q(x) = 0 \end{cases}$$

Define (posterior) probability measures $\Lambda = \{\lambda_x : x \in \mathfrak{X}\}$ by $d\lambda_x/d\lambda = p(\theta \mid x)$. Show that $\mathbb{P} = Q \otimes \Lambda$.

*[3] Let $(\mathfrak{X}, \mathcal{A}, \mu)$ and $(\mathfrak{Y}, \mathfrak{B}, \nu)$ be two measure spaces, with both μ and ν sigmafinite. Write \mathfrak{G} for the set of all functions expressible as finite linear combinations of measurable rectangles. That is, a typical g in \mathfrak{G} is expressible as a finite sum $\sum_{i=1}^{k} \alpha_i \{x \in A_i, y \in B_i\}$ for some sets $A_i \in \mathcal{A}$ and $B_i \in \mathfrak{B}$ and real numbers α_i , for i = 1, 2, ..., k.

Show that for each f in $\mathcal{L}^1(\mathfrak{X} \times \mathfrak{Y}, \mathcal{A} \otimes \mathfrak{B}, \mu \otimes \nu)$ and each $\epsilon > 0$ there exist a $g \in \mathfrak{G}$ such that $\mu \otimes \nu |f - g| < \epsilon$. Follow these steps.

- (i) First suppose that both μ and ν are finite measures and |f| is bounded. Use a lambda-space argument to establish the asserted approximation property.
- (ii) Extend to the sigma-finite case. Hint: First approximate the function f by some $f_n := (-n) \lor (f \land n)$.
- [4] (quantile minimizes Orlicz distance) UGMTP Problem 4.17.