Statistics 330b/600b, spring 2010 Homework # 9 Due: Thursday 8 April

For this sheet, suppose $(\Omega, \mathfrak{F}, \mathbb{P})$ and $(\mathfrak{T}, \mathfrak{B}, Q)$ are two probability spaces and T is an $\mathfrak{F}\backslash\mathfrak{B}$ -measurable map from Ω into \mathfrak{B} that has distribution Q.

- *[1] Suppose $\{\mathbb{P}_t : t \in \mathcal{T}\}$ is a set of probability measures on \mathcal{F} for which $t \mapsto \mathbb{P}_t F$ is B-measurable for each fixed F in \mathcal{F} .
 - (i) Show that $t \mapsto \mathbb{P}_t h(\omega)$ is \mathcal{B} -measurable for each fixed h in $\mathcal{M}^+(\Omega, \mathcal{F})$.
 - (ii) Suppose $\mathbb{P}g(T\omega)h(\omega) = Q^t g(t)\mathbb{P}^{\omega}_t h(\omega)$ for each $g \in \mathcal{M}^+(\mathfrak{T}, \mathcal{B})$ and $h \in \mathcal{M}^+(\Omega, \mathcal{F})$. Use a lambda-space argument to show that $\mathbb{P}f(T\omega, \omega) = Q^t \mathbb{P}^{\omega}_t f(t, \omega)$ for each bounded, $\mathcal{B} \otimes \mathcal{F}$ -measurable real function f on $\mathcal{T} \times \Omega$.
 - (iii) Suppose the function $f(t, \omega) := \{(t, \omega) : T\omega \neq t\}$ is product measurable. Explain why $f(T\omega, \omega) = 0$ for all ω . Deduce that $\mathbb{P}_t\{\omega : T\omega \neq t\} = 0$ for Q almost all t.
- *[2] Suppose $\{\mathbb{P}_t : t \in \mathcal{T}\}$ and $\{\widetilde{\mathbb{P}}_t : t \in \mathcal{T}\}$ are two candidates for the conditional probability distribution of $\mathbb{P}(\cdot \mid T = t)$. That is,

$$\mathbb{P}f(\omega) = Q^t \mathbb{P}_t^{\omega} f(\omega) = Q^t \widetilde{\mathbb{P}}_t^{\omega} f(\omega) \quad \text{for each } f \in \mathcal{M}^+(\Omega, \mathfrak{F}).$$

and $\mathbb{P}_t \{ T \neq t \} = 0 = \widetilde{\mathbb{P}}_t \{ T \neq t \}$ for Q almost all t.

Suppose the sigma-field \mathcal{F} is countably generated, that is, $\mathcal{F} = \sigma(\mathcal{E})$ for some countable collection \mathcal{E} of sets.

- (i) Why is there no loss of generality in assuming that \mathcal{E} is stable under the formation of finite intersections?
- (ii) For each $E \in \mathcal{E}$, show that $\mathbb{P}_t E = \widetilde{\mathbb{P}}_t E$ a.e [Q]. Hint: Consider $\mathbb{P}\{\omega \in E, T\omega \in B\}$ for various $B \in \mathcal{B}$.
- (iii) Show that there exists a *Q*-negligible set \mathbb{N} such that $\mathbb{P}_t = \widetilde{\mathbb{P}}_t$, as measures on \mathfrak{F} , for all $t \in \mathbb{N}^c$.
- *[3] Suppose X_1, \ldots, X_n is an exchangeable set of random variables, that is, the joint distribution of $(X_{\pi(1)}, \ldots, X_{\pi(n)})$ is the same for each permutation π of $\{1, 2, \ldots, n\}$. Define $S_n = X_1 + \cdots + X_n$ and $\mathfrak{G} = \sigma(S_n)$. Suppose each X_i is \mathbb{P} -integrable.
 - (i) For each bounded $\mathcal{B}(\mathbb{R})$ -measurable function g, show that $\mathbb{P}X_1g(S_n) = \mathbb{P}X_2g(S_n)$.
 - (ii) Show that $\mathbb{P}(X_1 \mid \mathcal{G}) = S_n/n$ almost surely.
- [4] (Conditional Jensen) UGMTP Problem 5.13.