
Appendix C

Convexity

SECTION 1 defines convex sets and functions.
SECTION 2 shows that convex functions defined on subintervals of the real line have left-

and right-hand derivatives everywhere.
SECTION 3 shows that convex functions on the real line can be recovered as integrals of

their one-sided derivatives.
SECTION 4 shows that convex subsets of Euclidean spaces have nonempty relative interiors.
SECTION 5 derives various facts about separation of convex sets by linear functions.

1. Convex sets and functions

A subset C of a vector space is said to be convex if it contains all the line segments
joining pairs of its points, that is,

αx1 + (1 − α)x2 ∈ C for all x1, x2 ∈ C and all 0 < α < 1.

A real-valued function f defined on a convex subset C (of a vector space V) is said
to be convex if

f (αx1 + (1 − α)x2) ≤ α f (x1) + (1 − α) f (x2) for all x1, x2 ∈ C and 0 < α < 1.

Equivalently, the epigraph of the function,

epi( f ) := {(x, t) ∈ C × R : t ≥ f (x)},
is a convex subset of C × R. Some authors (such as Rockafellar 1970) define f (x)

to equal +∞ for x ∈ V\C , so that the function is convex on the whole of V, and
epi( f ) is a convex subset of V × R.

This Appendix will establish several facts about convex functions and sets,
mostly for Euclidean spaces. In particular, the facts include the following results as
special cases.

(i) For a convex function f defined at least on an open interval of the real line
(possibly the whole real line), there exists a countable collection of linear
functions for which f (x) = supi∈N

(αi + βi x) on that interval.

(ii) If a real-valued function f has an increasing, real-valued right-hand derivative
at each point of an open interval, then f is convex on that interval. In
particular, if f is twice differentiable, with f ′′ ≥ 0, then f is convex.
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(iii) If a convex function f on a convex subsetC ⊆ R
n has a local minimum at

a point x0, that is, if f (x) ≥ f (x0) for all x in a neighborhood ofx0, then
f (w) ≥ f (x0) for all w in C.

(iv) If C1 and C2 are disjoint convex subsets ofR
n then there exists a nonzero

� in R
n for which supx∈C1

x · � ≤ infx∈C2 x · �. That is, the linear functional
x �→ x · � separates the two convex sets.

2. One-sided derivatives

Let f be a convex function, defined and real-valued at least on an intervalJ of the
real line.

Consider any three pointsx1 < x2 < x3, all in J . (For the moment, ignore
the point x0 shown in the picture.) Writeα for (x2 − x1)/(x3 − x1), so that
x2 = αx3 + (1 − α)x1. By convexity, y2 := α f (x3) + (1 − α) f (x1) ≥ f (x2). Write
S(xi , xj ) for

(
f (xj ) − f (xi )

)
/(xj − xi ), the slope of the chord joining the points

(xi , f (xi )) and (xj , f (xj )). Then

S(x2, x3) = f (x3) − f (x2)

x3 − x2

≥ f (x3) − y2

x3 − x2
= S(x1, x3) = y2 − f (x1)

x2 − x1

≥ f (x2) − f (x1)

x2 − x1
= S(x1, x2).

x1 x2 x3x0

slope S(x0,x1)
y2

slope S(x1,x3)

slope S(x2,x3)

slope S(x1,x2)

From the second inequality it follows thatS(x1, x) decreases asx decreases
to x1. That is, f has right-hand derivativeD+(x1) at x1, if there are points ofJ
that are larger thanx1. The limit might equal−∞, as in the case of the function
f (x) = −√

x defined onR
+, with x1 = 0. However, if there is at least one pointx0

of J for which x0 < x1 then the limit D+(x1) must be finite: Replacing{x1, x2, x3}
in the argument just made by{x0, x1, x2}, we haveS(x0, x1) ≤ S(x1, x2), implying
that −∞ < S(x0, x1) ≤ D+(x1).

The inequalityS(x1, x) ≤ S(x1, x2) ≤ S(x2, x ′) if x1 < x < x2 < x ′, leads to the
conclusion thatD+ is an increasing function. Moreover, it is continuous from the
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right, because

D+(x2) ≤ S(x2, x3) → S(x1, x3) as x2 ↓ x1, for fixed x3

→ D+(x1) as x3 ↓ x1.

Analogous arguments show that S(x0, x1) increases to a limit D−(x1) as x0

increases to x1. That is, f has left-hand derivative D1(x1) at x1, if there are points
of J that are smaller than x1.

If x1 is an interior point of J then both left-hand and right-hand derivatives
exist, and D−(x1) ≤ D+(x1). The inequality may be strict, as in the case where
f (x) = |x | with x1 = 0. The left-hand derivative has properties analogous to those
of the right-hand derivative. The following Theorem summarizes.

<1> Theorem. Let f be a convex, real-valued function defined (at least) on a bounded
interval [a, b] of the real line. The following properties hold.

(i) The right-hand derivative D+(x) exists,

f (y) − f (x)

y − x
↓ D+(x) as y ↓ x,

for each x in [a, b). The function D+(x) is increasing and right-continuous
on [a, b). It is finite for a < x < b, but D+(a) might possibly equal −∞.

(ii) The left-hand derivative D−(x) exists,

f (x) − f (z)

x − z
↑ D−(x) as z ↑ x,

for each x in (a, b]. The function D−(x) is increasing and left-continuous
function on (a, b]. It is finite for a < x < b, but D−(b) might possibly
equal +∞.

(iii) For a ≤ x < y ≤ b,

D+(x) ≤ f (y) − f (x)

y − x
≤ D−(y).

(iv) D−(x) ≤ D+(x) for each x in (a, b), and

f (w) ≥ f (x) + c(w − x) for all w in [a, b],

for each real c with D−(x) ≤ c ≤ D+(x).

Proof. Only the second part of assertion (iv) remains to be proved. For w > x use

f (w) − f (x)

w − x
= S(x, w) ≥ D+(x) ≥ c;

for w < x use
f (x) − f (w)

x − w
= S(w, x) ≤ D−(x) ≤ c,

where S(·, ·) denotes the slope function, as above.�
<2> Corollary. If a convex function f on a convex subset C ⊆ R

n has a local
minimum at a point x0, that is, if f (x) ≥ f (x0) for all x in a neighborhood of x0,
then f (w) ≥ f (x0) for all w in C .
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Proof. Consider first the case n = 1. Suppose w ∈ C with w > x0. The right-hand
derivative D+(x0) = limy↓x0 ( f (y) − f (x0)) /(y − x0) must be nonnegative, because
f (y) ≥ f (x0) for y near x0. Assertion (iv) of the Theorem then gives

f (w) ≥ f (x0) + (w − x0)D+(x0) ≥ f (x0).

The argument for w < x0 is similar.
For general R

n , apply the result for R along each straight line through x0.�
Existence of finite left-hand and right-hand derivatives ensures that f is

continuous at each point of the open interval (a, b). It might not be continuous at
the endpoints, as shown by the example

f (x) =
{

−√
x for x > 0

1 for x = 0.

Of course, we could recover continuity by redefining f (0) to equal 0, the value of
the limit f (0+) := limw↓0 f (w).

<3> Corollary. Let f be a convex, real-valued function on an interval [a, b]. There
exists a countable collection of linear functions di + ciw, for which the convex
function ψ(w) := supi∈N

(di + ciw) is everywhere ≤ f (w), with equality except
possibly at the endpoints w = a or w = b, where ψ(a) = f (a+) and ψ(b) = f (b−).

Proof. Let X0 := {xi : i ∈ N} be a countable dense subset of (a, b). Define
ci := D+(xi ) and di := f (xi )−ci xi . By assertion (iv) of the Theorem, f (w) ≥ di +ciw

for a ≤ w ≤ b for each i , and hence f (w) ≥ ψ(w).
If a < w < b then (iv) also implies that f (xi ) ≥ f (w) + (xi − w)D+(w), and

hence

ψ(w) ≥ f (xi ) + ci (w − xi ) ≥ f (w) − (xi − w) (D+(xi ) − D+(w)) for all xi .

Let xi decrease to w (through X0) to conclude, via right-continuity of D+ at w, that
ψ(w) ≥ f (w).

If D+(a) > −∞ then f is continuous at a, and

f (a) ≥ ψ(a) ≥ lim sup
xi ↓a

( f (xi ) + (a − xi )ci ) = f (a+) = f (a).

If D+(a) = −∞ then f must be decreasing in some neighborhood N of a, with
ci < 0 when xi ∈ N, and

ψ(a) ≥ sup
xi ∈N

( f (xi ) + (a − xi )ci ) ≥ sup
xi ∈N

f (xi ) = f (a+).

If ψ(a) were strictly greater than f (a+), the open set

{w : ψ(w) > f (a+)} = ∪i {w : di + ciw > f (a+)}
would contain a neighborhood of a, which would imply existence of points
w in N\{a} for which ψ(w) > f (a+) ≥ f (w), contradicting the inequality
ψ(w) ≤ f (w). A similar argument works at the other endpoint.�

3. Integral representations

Convex functions on the real line are expressible as integrals of one-sided derivatives.
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<4> Theorem. If f is real-valued and convex on [a, b], with f (a) = f (a+) and
f (b) = f (b−), then both D+(x) and D−(x) are integrable with respect to Lebesgue
measure on [a, b], and

f (x) = f (a) +
∫ x

a
D+(t) dt = f (a) +

∫ x

a
D−(t) dt for a ≤ x ≤ b.

Proof. Choose α and β with a < α < β < x . For a positive integer n, define
δ := (β − α)/n and xi := α + iδ for i = 0, 1, . . . , n. Both D+ and D− are bounded
on [α, β]. For i = 2, . . . , n − 1, part (iii) of Theorem <1> and monotonicity of both
one-sdied derivatives gives

∫ xi−1

xi−2

D+(t) dt ≤ δD+(xi−1) ≤ f (xi ) − f (xi−1) ≤ δD−(xi ) ≤
∫ xi+1

xi

D−(t) dt,

which sums to give
∫ xn−2

α

D+(t) dt ≤ f (xn−1) − f (x1) ≤
∫ β

x2

D−(t) dt.

Let n tend to infinity, invoking Dominated Convergence and continuity of f , to
deduce that

∫ β

α
D+(t) dt ≤ f (β) − f (α) ≤ ∫ β

α
D−(t) dt . Both inequalities must

actually be equalities, because D−(t) ≤ D+(t) for all t in (a, b).
Let α decrease to a. Monotone Convergence—the functions D± are bounded

above by D+(β) on (a, β]—and continuity of f at a give f (β)− f (a) = ∫ β

a D+(t) dt =
∫ β

a D−(t) dt . In particular, the negative parts of both D± are integrable. Then let β

increase to x to deduce, via a similar argument, the asserted integral expressions for
f (x) − f (a), and the integrability of D± on [a, b].�

Conversely, suppose f is a continuous function defined on an interval [a, b],
with an increasing, real-valued right-hand derivative D+(t) existing at each point of
[a, b). On each closed proper subinterval [a, x], the function D+ is bounded, and
hence Lebesgue integrable. From Section 3.4, f (x) = ∫ x

a D+(t) dt for all a ≤ x < b.
Equality for x = b also follows, by continuity and Monotone Convergence. A
simple argument will show that f is then convex on [a, b].

More generally, suppose D is an increasing, real-valued function defined (at
least) on [a, b). Define g(x) := ∫ x

a D(t) dt , for a ≤ x ≤ b. (Possibly g(b) = ∞.)
Then g is convex. For if a ≤ x0 < x1 ≤ b and 0 < α < 1 and xα := (1 − α)x0 + αx1,
then

(1 − α)g(x0) + αg(x1) − g(xα)

=
∫ b

a

(
(1 − α){t ≤ x0} + α{t ≤ x1} − {t ≤ xα}) D(t) dt

=
∫ b

a

(
α{xα < t ≤ x1} − (1 − α){x0 < t ≤ xα}) D(t) dt

≥ (
α(x1 − xα) − (1 − α)(xα − x0)

)
D(xα) = 0.

<5> Example. Let f be a twice continuously differentiable (actually, absolute
continuity of f ′ would suffice) convex function, defined on a convex interval J ⊆ R
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that contains the origin. Suppose f (0) = f ′(0) = 0. The representations

f (x) = x
∫ {0 ≤ s ≤ 1} f ′(xs) ds

= x2 ∫∫ {0 ≤ t ≤ s ≤ 1} f ′′(xt) dt ds = x2
∫ 1

0 (1 − t) f ′′(xt) dt,

establish the following facts.

(i) The function f (x)/x is increasing.

(ii) The function φ(x) := 2 f (x)/x2 is nonnegative and convex.

(iii) If f ′′ is increasing then so is φ.

Moreover, Jensen’s inequality for the uniform distribution λ on the triangular region
{0 ≤ t ≤ s ≤ 1} implies that

φ(x) = λs,t f ′′(xt) ≥ f ′′ (λs,t xt
) = f ′′(x/3).

Two special cases of these results were needed in Chapter 10, to establish the
Bennett inequality and to establish Kolmogorov’s exponential lower bound. The
choice f (x) := ex − 1 − x , with f ′′(x) = ex , leads to the conclusion that the function

�(x) :=
{

ex − 1 − x
x2/2

for x �= 0

1 for x = 0
is nonnegative and increasing over the whole real line. The choice f (x) :=
(1 + x) log(1 + x) − x , for x ≥ −1, with f ′(x) = log(1 + x) and f ′′(x) = (1 + x)−1,
leads to the conclusion that the function

ψ(x) :=
{

(1 + x) log(1 + x) − x

x2/2
for x ≥ −1 and x �= 0

1 for x = 0.
is nonnegative, convex, and decreasing. Also xψ(x) is increasing on R

+, and
ψ(x) ≥ (1 + x/3)−1.�

4. Relative interior of a convex set

Convex subsets of Euclidean spaces either have interior points, or they can be
regarded as embedded in lower dimensional subspaces within which they have
interior points.

<6> Theorem. Let C be a convex subset of R
n .

(i) There exists a smallest subspace V for which C ⊆ x0 ⊕ V := {x0 + x : x ∈ V},
for each x0 ∈ C .

(ii) dim(V) = n if and only if C has a nonempty interior.

(iii) If int(C) �= ∅, there exists a convex, nonnegative function ρ defined on R
n

for which int(C) = {x : ρ(x) < 1} ⊆ C ⊆ {x : ρ(x) ≤ 1} = int(C).

Proof. With no loss of generality, suppose 0 ∈ C . Let x1, . . . , xk be a maximal set
of linearly independent vectors from C , and let V be the subspace spanned by those
vectors. Clearly C ⊆ V. If k < n, there exists a unit vector w orthogonal to V, and
every point x of V is a limit of points x + tw not in V. Thus C has an empty interior.
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If k = n, write x̄ for
∑

i xi/n. Each member of the usual orthonormal basis has a
representation as a linear combination, ei = ∑

j ai, j xj . Choose an ε > 0 for which

2nε
(∑

i a2
i, j

)1/2
< 1 for every j . For every y := ∑

i yi ei in R
n with |y| < ε, the

coefficients βj := (2n)−1 + ∑
i ai, j yi are positive, summing to a quantity 1 − β0 ≤ 1,

and x̄/2 + y = β00 + ∑
i βi xi ∈ C . Thus x̄/2 is an interior point of C .

If int(C) �= ∅, we may, with no loss of generality, suppose 0 is an interior
point. Define a map ρ : R

n → R
+ by ρ(z) := inf{t > 0 : z/t ∈ C}. It is easy

to see that ρ(0) = 0, and ρ(αy) = αρ(y) for α > 0. Convexity of C implies that
ρ(z1 + z2) ≤ ρ(z1) + ρ(z2) for all zi : if zi/ti ∈ C then

z1 + z2

t1 + t2
= t1

t1 + t2

(
z1

t1

)
+ t2

t1 + t2

(
z2

t2

)
∈ C.

In particular, ρ is a convex function. Also ρ satisfies a Lipschitz condition: if
y = ∑

i yi ei and z = ∑
i zi ei then

ρ(y) − ρ(z) ≤ ρ(y − z) = ρ
(∑

i (yi − zi )ei
)

≤ ∑
i

(
(yi − zi )

+ρ(ei ) + (yi − zi )
−ρ(−ei )

)

≤ |y − z|
(∑

i
ρ(ei )

2 ∨ ρ(−ei )
2
)1/2

.

Thus {ρ < 1} is open and {ρ ≤ 1} is closed.
Clearly ρ(x) ≤ 1 for every x in C; and if ρ(x) < 1 then x0 := x/t ∈ C for some

t < 1, implying x = (1 − t)0 + t x0 ∈ C . Thus {z : ρ(z) < 1} ⊆ C ⊆ {z : ρ(z) ≤ 1}.
Every point x with ρ(x) = 1 lies on the boundary, being a limit of points x(1 ± n−1)

from C and Cc. Assertion (iii) follows.�
If C ⊆ x0 ⊕ V ⊆ R

n , with dim(V) = k < n, we can identify V with R
k and C

with a subset of R
k . By part (ii) of the Theorem, C has a nonempty interior, as a

subset of x0 ⊕V. That is, there exist points x of C with open neighborhoods (in R
n)

for which N ∩ (x0 ⊕ V) ⊆ C . The set of all such points is called the relative interior
of C , and is denoted by rel-int(C). Part (iii) of the Theorem has an immediate
extension,

rel-int(C) ⊆ C ⊆ rel-int(C),

with a corresponding representation via a convex function ρ defined only on x0 ⊕ V.

5. Separation of convex sets by linear functionals

The theorems asserting existence on separating linear functionals depend on the
following simple extension result.

<7> Lemma. Let f be a real-valued convex function, defined on a vector space V. Let
T0 be a linear functional defined on a vector subspace V0, on which T0(x) ≤ f (x)

for all x ∈ V0. Let y1 be a point of V not in V0. There exists an extension of T0 to a
linear functional T1 on the subspace V1 spanned by V0 ∪{y1} for which T1(z) ≤ f (z)
on V1.
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Proof. Each point z in V1 has a unique representation z := x + r y1, for some
x ∈ V0 and some r ∈ R. We need to find a value for T1(y1) for which f (x + r y1) ≥
T0(x) + rT1(y1) for all r ∈ R. Equivalently we need a real number c such that

inf
x0∈V0, t>0

f (x0 + t y1) − T0(x0)

t
≥ c ≥ sup

x1∈V0, s>0

T0(x1) − f (x1 − sy1)

s
,

for then T1(y1) := c will give the desired extension.
For given x0, x1 in V0 and s, t > 0, define α := s/(s+t) and xα := αx0+(1−α)x1.

Then, by convexity of f on V1 and linearity of T0 on V0,
s

s + t
f (x0 + t y1) + t

s + t
f (x1 − sy1) ≥ f (xα) ≥ T0(xα) = s

s + t
T0(x0) + t

s + t
T0(x1),

which implies

∞ >
f (x0 + t y1) − T0(x0)

t
≥ T0(x1) − f (x1 − sy1)

s
> −∞.

The infimum over x0 and t > 0 on the left-hand side must be greater than or equal
to the supremum over x1 and s > 0 on the right-hand side, and both bounds must
be finite. Existence of the desired real c follows.�

Remark. The vector space V need not be finite dimensional. We can order
extensions of T0, bounded above by f , by defining (Tα,Vα) � (Tβ,VB) to mean
that Vβ is a subspace of Vα , and Tα is an extension of Tβ . Zorn’s lemma gives a
maximal element of the set of extensions (Tγ ,Vγ ) � (T0,V0). Lemma <7> shows
that Vγ must equal the whole of V, otherwise there would be a further extension.
That is, T0 has an extension to a linear functional T defined on V with T (x) ≤ f (x)

for every x in V. This result is a minor variation on the Hahn-Banach theorem from
functional analysis (compare with page 62 of Dunford & Schwartz 1958).

<8> Theorem. Let C be a convex subset of R
n and y0 be a point not in rel-int(C).

(i) There exists a linear functional T on R
k for which 0 �= T (y0) ≥ supx∈ C T (x).

(ii) If y0 /∈  C , then we may choose T so that T (y0) > supx∈ C T (x).

Proof. With no loss of generality, suppose 0 ∈ C . Let V denote the subspace
spanned by C , as in Theorem <6>. If y0 /∈ V, let 
 be its component orthogonal
to V. Then y0 · 
 > 0 = x · 
 for all x in C .

If y0 ∈ V, the problem reduces to construction of a suitable linear functional T
on V: we then have only to define T (z) := 0 for z /∈ V to complete the proof.
Equivalently, we may suppose that V = R

n . Define T0 on V0 := {r x0 : r ∈ R} by
T (r y0) := rρ(y0), for the ρ defined in Theorem <6>. Note that T0(y0) = ρ(y0) ≥ 1,
because y0 /∈ rel-int(C) = {ρ < 1}. Clearly T0(x) ≤ ρ(x) for all x ∈ V0. Invoke
Lemma <7> repeatedly to extend T0 to a linear functional T on R

n , with T (x) ≤ ρ(x)

for all x ∈ R
n . In particular,

T (y0) ≥ 1 ≥ ρ(x) ≥ T (x) for all x ∈  C = {ρ ≤ 1}.
For (ii), note that T (y0) > 1 if y0 /∈  C .�

<9> Corollary. Let C1 and C2 be disjoint convex subsets of R
n . Then there is a

nonzero linear functional for which infx∈ C1
T (x) ≥ supx∈ C2

T (x).
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Proof. Define C as the convex set {x1 − x2 : xi ∈ Ci }. The origin does not belong
to C . Thus there is a nonzero linear functional for which 0 = T (0) ≥ T (x1 − x2) for
all xi ∈ Ci .�

<10> Corollary. For each closed convex subset F of R
n there exists a countable family

of closed halfspaces {Hi : i ∈ N} for which F = ∩i∈N Hi .

Proof. Let {xi : i ∈ N} be a countable dense subset of Fc. Define ri as the distance
from xi to F , which is strictly positive for every i , because Fc is open. The open
ball B(xi , ri ) with radius ri and center xi is convex and disjoint from F . From
the previous Corollary, there exists a unit vector 
i and a constant ki for which

i ·y ≥ ki ≥ 
i ·x for all y ∈ B(xi , ri ) and all x ∈ F . Define Hi := {x ∈ R

n : 
i ·x ≤ ki }.
Each x in Fc is the center of some open ball B(x, 3ε) disjoint from F . There

is an xi with |x − xi | < ε. We then have ri ≥ 2ε, because B(x, 3ε) ⊇ B(xi , 2ε), and
hence x − ε
i ∈ B(xi , ri ). The separation inequality 
i · (x − ε
i ) ≥ ki then implies

i · x > ki , that is x /∈ Hi .�

<11> Corollary. Let f be a convex (real-valued) function defined on a convex subset C
of R

n , such that epi( f ) is a closed subset of R
n+1. Then there exist {di : i ∈ N} ⊆ R

n

and {ci : i ∈ N} ⊆ R such that f (x) = supi∈N
(ci + di · x) for every x in C .

Proof. From the previous Corollary, and the definition of epi( f ), there exist 
i ∈ R
n

and constants αi , ki ∈ R such that

∞ > t ≥ f (x) if and only if ki ≥ 
i · x − tαi for all i ∈ N.

The i th inequality can hold for arbitrarily large t only if αi ≥ 0. Define ψ(x) :=
supαi >0 (
i · x − ki ) /αi . Clearly f (x) ≥ ψ(x) for x ∈ C . If s < f (x) for an x in C
then there must exist an i for which 
i · x − f (x)αi ≤ ki < 
i · x − sαi , thereby
forcing αi > 0 and s < ψ(x).�

6. Problems

[1] Let f be the convex function, taking values in R ∪ {∞}, defined by

f (x, y) =
{

−y1/2 for 0 ≤ 1 and x ∈ R

∞ otherwise.

Let T0 denote the linear function defined on the x-axis by T0(x, 0) := 0 for all
x ∈ R. Show that T0 has no extension to a linear functional on R

2 for which
T (x, y) ≤ f (x, y) everywhere, even though T0 ≤ f along the x-axis.

[2] Suppose X is a random variable for which the moment generating function,
M(t) := P exp(t X), exists (and is finite) for t in an open interval J about the origin
of the real line. Write Pt for the probability measure with density et X/M(t) with
respect to P, for t ∈ J , with corresponding variance vart (·). Define �(t) := log M(t).

(i) Use Dominated Convergence to justify the operations needed to show that

�′(t) = M ′(t)/M(t) = P
(
Xet X/M(t)

) = Pt X,

�′′(t) = (
M(t)M ′′(t) − M ′(t)2)/M(t)2 = vart (X).
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(ii) Deduce that � is a convex function on J .

(iii) Show that � achieves its minimum at t = 0 if PX = 0.

[3] Let Q be a probability measure defined on a finite interval [a, b]. Write σ 2
Q for its

variance.

(i) Show that σ 2
Q ≤ (b − a)2/4. Hint: Reduce to the case b = −a, noting that

σ 2
Q ≤ Qx

(
x2

)
.

(ii) Suppose also that Qx (x) = 0. Define �(t) := log
(
Qx ext

)
, for t ∈ R. Show that

�′′(t) ≤ (b − a)2/4, and hence �(t) ≤ t2(b − a)2/8 for all t ∈ R.

(iii) (Hoeffding 1963) Let X1, . . . , Xn be independent random, variables with zero
expected values, and with Xi taking values only in a finite interval [ai , bi ]. For
ε > 0, show that

P{X1 + . . . + Xn ≥ ε} ≤ inf
t>0

e−εt∏
iPet Xi ≤ exp

(−2ε2/ ∑
i (bi − ai )

2
)
.

[4] Let P be a probability measure on R
k . Define M(t); = Px

(
ex ·t) for t ∈ R

k .

(i) Show that the set C := {t ∈ R
k : M(t) < ∞} is convex.

(ii) Show that log M(t) is convex on rel-int(C).

[5] Let f be a convex increasing function on R
+. Show that there exists an increasing

sequence of convex, increasing functions fn , with each f ′′
n bounded and continuous,

such that 0 ≤ fn(x) ≤ fn+1(x) ↑ f (x) for each x . Hint: Approximate the right-hand
derivative of f from below by smooth, increasing functions.

7. Notes

Most of the material described in this Appendix can be found, often in much greater
generality, in the very thorough monograph by Rockafellar (1970).
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