Appendix C
Convexity

SECTION 1 defines convex sets and functions.

SECTION 2 shows that convex functions defined on subintervals of the real line have |eft-
and right-hand derivatives everywhere.

SECTION 3 shows that convex functions on the real line can be recovered as integrals of
their one-sided derivatives.

SECTION 4 shows that convex subsets of Euclidean spaces have nonempty relative interiors.
SECTION 5 derives various facts about separation of convex sets by linear functions.

1. Convex sets and functions

A subset C of a vector space is said to be convex if it contains al the line segments
joining pairs of its points, that is,

ax1+ (L —-—a)xp eC fordl x;,xpeCandal 0 <o < 1.

A real-valued function f defined on a convex subset C (of a vector space V) is said
to be convex if

flaxi+ (1 —a)x) <af(x) + (1 —a)f(x) foral x;,x>eCand0 <o < 1.
Equivaently, the epigraph of the function,
epi(f):={(x,) eCxR:t> f(x)},

is a convex subset of C x R. Some authors (such as Rockafellar 1970) define f (x)
to equal +oo for x € V\C, so that the function is convex on the whole of V, and
epi(f) is aconvex subset of V x R.

This Appendix will establish severa facts about convex functions and sets,
mostly for Euclidean spaces. In particular, the facts include the following results as
special cases.

(i) For a convex function f defined at least on an open interval of the real line
(possibly the whole real line), there exists a countable collection of linear
functions for which f(x) = sup;y (@i + Bix) on that interval.

(ii) If areal-valued function f has an increasing, real-valued right-hand derivative
at each point of an open interval, then f is convex on that interval. In
particular, if f istwice differentiable, with f” > 0, then f is convex.
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(iii) If a convex function f on a convex subse&l € R" has a local minimum at
a point xg, that is, if f(x) > f(xg) for all x in a neighborhood oko, then
f(w) > f(xp) for all win C.

(iv) If C1 andC, are disjoint convex subsets &" then there exists a nonzero

€ in R" for which sup.c, x - £ < infycc, X - €. That is, the linear functional
X — X - £ separates the two convex sets.

One-sided derivatives

Let f be a convex function, defined and real-valued at least on an intérefithe
real line.

Consider any three pointg < x2 < xs, all in J. (For the moment, ignore
the pointxy shown in the picture.) Writex for (xo — x1)/(Xs — X1), so hat
X2 = axz + (1 — a)x1. By convexity,y» := af (x3) + (1 — ) f (X1) > f(x2). Write
S(xi, %) for (f(x)) — f(x))/(x — %), the slope of the chord joining the points
i, (X)) and (Xj, f(Xj)). Then

f(xa) — f(x2)

S(X2, X3) =
X3 — X2

f(x3) — — f(x
. (X3) —y2 _ S(x1. Xa) = Y2 (X1)

X3 — X2 X2 — X1

f(x2) — f(x1)
> ————— = S(Xq1, X2).
X2 — X1
slope S(x,,X5)
slope S(x,,X5) \
slope S(x,X,)

slope S(x,,X,)

From the second inequality it follows th&(x1, x) decreases as decreases
to x1. That is, f has right-hand derivativ®_ (x;) at x3, if there are points of
that are larger tham;. The limit might equal-oco, as in the case of the function
f (x) = —/x defined onR™, with x; = 0. However, if there is at least one poixt
of J for which xg < x;1 then the limitD, (x;) must be finite: Replacingxi, X2, X3}
in the argument just made by, X1, X2}, we haveS(xp, x1) < S(x1, X2), implying
that —oo < S(xg, X1) < D, (X1).

The inequalityS(x1, X) < S(x1, X2) < S(x2, X') if X1 < X < X2 < X/, leads to the
conclusion thatD, is an increasing function. Moreover, it is continuous from the



C.2 One-sided derivatives 309

right, because
D.(X2) < S(X2, X3) = S(X1, X3) as X | x1, for fixed x3
— Di(x2) as X3 | X1.
Analogous arguments show that S(xg, x1) increases to a limit D_(x;) as Xo

increases to x;. That is, f has left-hand derivative D1(x1) at x1, if there are points
of J that are smaller than x;.

If x1 is an interior point of J then both left-hand and right-hand derivatives
exist, and D_(x1) < D, (x1). The inequality may be strict, as in the case where
f(x) = |x| with x; = 0. The left-hand derivative has properties analogous to those
of the right-hand derivative. The following Theorem summarizes.

<1> Theorem. Let f beaconvex, real-valued function defined (at least) on a bounded
interval [a, b] of the real line. The following properties hold.
(i) The right-hand derivative D, (x) exists,
f(y) — f(x)
y —X
for each x in[a, b). The function D (x) is increasing and right-continuous
onla,b). Itisfinite fora < x < b, but D, (a) might possibly equal —cc.
(ii) The left-hand derivative D_(x) exists,
f(x)— f(2
EEvE—— T D_(X) aszt X,

for each x in (a, b]. The function D_(x) is increasing and left-continuous
function on (a, b]. It is finite for a < x < b, but D_(b) might possibly
equal +oo.

(iii) Fora<x<y<bh,

1 DX asyl X

f(y)— f(x)

Di(x) < >

= D_(y.

(iv) D_(x) < D, (x) for each x in (a, b), and
f(w) > f(X) +c(w—X) for al win [a, b],
for each real ¢ with D_(x) < ¢ < D,(X).
Proof. Only the second part of assertion (iv) remains to be proved. For w > x use

T =10 _ g uy > Do) > c

w — X

for w < x use f f
100 =T _ g %) < Do <.

X—w

O where S(-, -) denotes the slope function, as above.

<2> Corollary. If a convex function f on a convex subset C € R" has a local
minimum at a point xo, that is, if f(x) > f(xg) for al x in a neighborhood of xg,
then f(w) > f(xg) for al w inC.



<3>

310 Appendix C:  Convexity

Proof. Consider first the case n = 1. Suppose w € C with w > xg. The right-hand
derivative D4 (Xo) = limy,, (f(y) — f(X0)) /(y — Xo) must be nonnegative, because
f(y) > f(xo) for y near xo. Assertion (iv) of the Theorem then gives

f(w) > f(Xo) + (w — X0) D4 (Xo) > f(X0).

The argument for w < Xg is similar.
For general R", apply the result for R along each straight line through xo.
Existence of finite left-hand and right-hand derivatives ensures that f is
continuous at each point of the open interval (a, b). It might not be continuous at
the endpoints, as shown by the example
foxy= 1 —vx forx>0
) { 1 for x =0.
Of course, we could recover continuity by redefining f (0) to equal O, the value of
the limit f (0+) :=lim, 0 f(w).
Corollary. Let f be a convex, real-valued function on an interval [a, b]. There
exists a countable collection of linear functions d; + c,w, for which the convex
function v (w) = sup;y (di + Ciw) is everywhere < f(w), with equality except
possibly at the endpoints w = a or w = b, where v (a) = f(a+) and v (b) = f(b—).
Proof. Let Xo := {X : i € N} be a countable dense subset of (a,b). Define
G :=D,(x)andd = f(x)—cx. By assertion (iv) of the Theorem, f (w) > di+cw
fora<w < bforeachi, and hence f(w) > ¥ (w).
If a < w < b then (iv) aso implies that f(x) > f(w) + (x — w)D,(w), and
hence
Y(w) > f(x)+ci(w—x)> fw) — (6 —w) (Di(X) — Dy(w)) for all ;.

Let x; decrease to w (through Xp) to conclude, via right-continuity of D, at w, that
Y(w) > f(w).
If D.(a) > —oo then f is continuous at a, and

f(@>vy(@ >limsup(f(x)+ @—x)c) = fa+) = f(a).

Xila
If D,(a) = —oo then f must be decreasing in some neighborhood N of a, with
¢ < Owhen x € N, and

Y@ =sup (f(x)+@—x)c) =>sup f(x) = f(a+).
Xj eN Xi N

If ¥ (a) were strictly greater than f (a+), the open set
{fw:vw) > f@h)}=U{w:d +cqw > f(@at+)}
would contain a neighborhood of a, which would imply existence of points

w in N\{a} for which v(w) > f(a+) > f(w), contradicting the inequality
¥(w) < f(w). A similar argument works at the other endpoint.

Integral representations

Convex functions on the real line are expressible as integrals of one-sided derivatives.
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Theorem. If f js rea-valued and convex on [a, b], with f(a) = f(a+) and
f(b) = f(b—), then both D, (x) and D_(x) are integrable with respect to L ebesgue
measure on [a, b], and

f(x):f(a)+/ D+(t)dt:f(a)+/ D_(t)dt fora<x<h.

Proof. Choose « and g with a < @ < B8 < x. For a positive integer n, define

S =B-—a)/nandx :=a+id fori =0,1,...,n. Both D, and D_ are bounded
onfa,B]. Fori =2,...,n—1, part (iii) of Theorem <1> and monotonicity of both
one-sdied derivatives gives

Xit1

/ - Dit)dt <Dy (x-1) < f(x) — f(Xi—1) <8D_(x) 5/ D_(t)dt,

Xi—2 Xi

which sums to give

Xn-2 /3
/ D) dt < f (1) — F(x0) < / D_(t)dt.

Let n tend to infinity, invoking Dominated Convergence and continuity of f, to
deduce that [* D, (t)dt < f(B) — f(@) < [ D_(t)dt. Both inequalities must
actually be equalities, because D_(t) < D, (t) for al t in (a, b).

Let o decrease to a. Monotone Convergence—the functions D.. are bounded
above by D, (8) on (a, B]—and continuity of f atagive f(8)—f(@ = [’ D, (t)dt =
ff D_(t)dt. In particular, the negative parts of both D, are integrable. Then let g
increase to x to deduce, via a similar argument, the asserted integral expressions for
f(x) — f(a), and the integrability of D on [a, b].

Conversely, suppose f is a continuous function defined on an interval [a, b],
with an increasing, real-valued right-hand derivative D, (t) existing at each point of
[a, b). On each closed proper subinterval [a, x], the function D, is bounded, and
hence Lebesgue integrable. From Section 3.4, f (x) = f;‘ D,(t)dt foral a<x < h.
Equality for x = b aso follows, by continuity and Monotone Convergence. A
simple argument will show that f is then convex on [a, b].

More generally, suppose D is an increasing, real-valued function defined (at
least) on [a, b). Define g(x) := [ D(t)dt, for a < x < b. (Possibly g(b) = cc.)
Thengisconvex. Forifa<xp<xi<bandO<a <1andx, :=(1—a)Xg+ axXy,
then

(1 — a@)g(Xo) + @g(X1) — 9(Xy)
b
_ / (L= )it < X0} +alt < X1} — {t < %) Dt dit

b
=/ (afxe <t <x1}— (L—a)fxo <t < X,}) D(t)dt

> (a(X1 — %) — (1 — &) (Xa — X0)) D(%,) = 0.

Example. Let f be a twice continuously differentiable (actualy, absolute
continuity of f’ would suffice) convex function, defined on a convex interval J C R
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that contains the origin. Suppose f(0) = f’(0) = 0. The representations
f(x)=x[{0<s<1}f'(xs)ds
=x? [[{0<t<s<1f'(xtydtds=x2 [5(1—t)f"(xt)dt,
establish the following facts.
(i) The function f(x)/x isincreasing.
(i) The function ¢ (x) := 2f (x)/x? is nonnegative and convex.
(iii) If f” isincreasing then so is ¢.
Moreover, Jensen’s inequality for the uniform distribution A on the triangular region
{0 <t <s <1} implies that
d(x) =231 17 (xt) > £ (2%'xt) = £7(x/3).
Two special cases of these results were needed in Chapter 10, to establish the

Bennett inequality and to establish Kolmogorov's exponential lower bound. The
choice f(x) :=e*—1—x, with f”(x) = €%, leads to the conclusion that the function
AK) ::{eXT%X forx#0

1 forx=0
is nonnegative and increasing over the whole rea line. The choice f(x) =
1+ x)log(l+ x) — x, for x > —1, with f/(x) =log(1 + x) and f"(x) = (L +x)7%,
leads to the conclusion that the function

w(x) — { (1+X)IC))(92(/12+X)_X fOfXZ—l andx;éO

for x =0.
is nonnegative, convex, and decreasing. Also xy(x) is increasing on R*, and
Y () = (1+x/3)7%

Relative interior of a convex set

Convex subsets of Euclidean spaces either have interior points, or they can be
regarded as embedded in lower dimensional subspaces within which they have
interior points.

Theorem. LetC be aconvex subset of R".

(i) There exists a smallest subspace V for whichC C xo®V = {Xo+ X : X € V},
for each xg € C.

(ii) dim(V) = n if and only if C has a nonempty interior.
(iii) If int(C) # ¢, there exists a convex, nonnegative function p defined on R"
for whichint(C) = {x: p(X) <1} CC C {x: p(X) <1} =int(C).

Proof. With no loss of generality, suppose 0 € C. Let X, ..., xx be a maximal set
of linearly independent vectors from C, and let V be the subspace spanned by those
vectors. Clearly C C V. If k < n, there exists a unit vector w orthogonal to V, and
every point x of Visalimit of points x+tw not in V. Thus C has an empty interior.
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If k =n, write X for }_; x;/n. Each member of the usual orthonormal basis has a
representation as a linear combination, § = Zj & jXj. Choose an ¢ > O for which

2ne (Zi a&)l/z < 1for every j. For every y := >, yie in R" with |y| < ¢, the
coefficients g; := (2n)~* + 3", &y are positive, summing to a quantity 1 — o < 1,
and X/2+y = Bo0+ > Bixi € C. Thus x/2 is an interior point of C.

If int(C) # ¥, we may, with no loss of generality, suppose O is an interior
point. Defineamap o : R" — R by p(2) ;.= inf{t > 0: z/t € C}. It is easy
to see that p(0) = 0, and p(ay) = ap(y) for @ > 0. Convexity of C implies that
0(Z1+22) < p(z21) + p(z2) for dl z: if z/t € C then

z1+72 ty (Zl) to (Zz)
are _ 1 (4, 2)ec
i+t G+t \i1 1+t \tz

In particular, p is a convex function. Also p satisfies a Lipschitz condition: if
y=>,ve adz=>3ze then

p(Y) —p@ <p(y—2=p (X} —2z)&)
=2 (W —z)TpE) + (i —z) p(—8e))

<ly-2(Y, p@? v pt-er) .

Thus {p < 1} isopen and {p < 1} is closed.

Clearly p(x) < 1for every x in C; and if p(x) < 1then xo := x/t € C for some
t<1 implyingx =1 —-t)0+txgpe C. Thus{z: p(z) <1} CC C{z:p(2 <1}.
Every point x with p(x) = 1 lies on the boundary, being a limit of points x(1+n-1)
from C and C°. Assertion (iii) follows.

If CCxo®V CR", with dim(V) = k < n, we can identify V with R and C
with a subset of R. By part (ii) of the Theorem, C has a nonempty interior, as a
subset of xo @ V. That is, there exist points x of C with open neighborhoods (in R")
for which NN (xo ® V) € C. The set of al such pointsis caled the relative interior
of C, and is denoted by rel-int(C). Part (iii) of the Theorem has an immediate
extension,

rel-int(C) € C C rd-int(C),

with a corresponding representation via a convex function p defined only on xo & V.

Separation of convex sets by linear functionals

The theorems asserting existence on separating linear functionals depend on the
following simple extension result.

Lemma. Let f beareal-valued convex function, defined on a vector spaceV. Let
To be a linear functional defined on a vector subspace Vo, on which To(x) < f(X)
forall x € Vo. Letys beapoint of V not inVy. There exists an extension of Ty to a
linear functional T, on the subspace V1 spanned by Vo U {y1} for which T1(z) < f(2)
onV.
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Proof. Each point z in V; has a unique representation z := x + rys, for some
X € Vo and somer € R. We need to find a value for T1(y;) for which f(x +ry;) >
To(X) +rT1(yr) for al r € R. Equivalently we need a real number ¢ such that

inf f (Xo + ty1) — To(Xo) >c>  sup To(xy) — f(x1 — SY1),
Xo€Vo, t>0 t x1€Vg, s>0 S
for then T1(y1) := c will give the desired extension.
For given xo, X1 in Vg and s, t > 0, define o := s/(s+t) and X, := aXp+(1—a)X1.
Then, by convexity of f on V1 and linearity of Ty on Vo,

s t s t
> t — f(x— f To(Xe) = —— T — To(x),
s oD+ oo Foa—syn = 06) = Tok) = 5= To00) + o Tolx)

which implies
f(Xo +1ty1) — To(Xo) _ To(X1) — f (X1 —Sy1)
> " > S > —
The infimum over xo and t > 0 on the left-hand side must be greater than or equal
to the supremum over x; and s > 0 on the right-hand side, and both bounds must
be finite. Existence of the desired real c follows.

REMARK.  The vector space V need not be finite dimensiona. We can order
extensions of To, bounded above by f, by defining (T,.V,) = (T4, Vz) to mean
that V; is a subspace of V,, and T, is an extension of Ts. Zorn's lemma gives a
maximal element of the set of extensions (T,,V,) = (To, Vo). Lemma <7> shows
that V, must equal the whole of 'V, otherwise there would be a further extension.
That is, T, has an extension to a linear functional T defined on 'V with T(x) < f(X)
for every x in V. This result is a minor variation on the Hahn-Banach theorem from
functional analysis (compare with page 62 of Dunford & Schwartz 1958).

Theorem. Let C be a convex subset of R" and yo be a point not in rel-int(C).
(i) There exists a linear functional T on R for which 0 # T (yo) > sup,.z T(X).
(ii) If yo ¢ C, then we may choose T so that T (yo) > SUp,.g T (X).

Proof. With no loss of generality, suppose O € C. Let V denote the subspace
spanned by C, as in Theorem <6>. If yo ¢ V, let ¢ be its component orthogonal
toV. Thenyy- ¢ >0=x-¢ foral xinC.

If yo € V, the problem reduces to construction of a suitable linear functional T
on V. we then have only to define T(z) := 0 for z ¢ V to complete the proof.
Equivalently, we may suppose that V = R". Define To on Vo := {rxo : r € R} by
T(ryo) :=rp(yo), for the p defined in Theorem <6>. Note that To(yo) = p(yo) > 1,
because yg ¢ rel-int(C) = {p < 1}. Clearly To(x) < p(x) for al x € Vg. Invoke
Lemma <7> repeatedly to extend Ty to alinear functional T on R", with T (x) < p(X)
for al x € R". In particular,

T(yo) > 1> p(x) > T(X) forall xe C={p <1}
For (ii), note that T (yo) > 1if yo ¢ C.

Corollary. Let C, and C, be disoint convex subsets of R". Then there is a
nonzero linear functional for which inf, g T(x) > SUPyc, T(X).
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Proof. Define C as the convex set {x1 — X2 : x; € Cj}. The origin does not belong
to C. Thus there is a nonzero linear functional for which 0 = T(0) > T(x1 — x») for
al xi € Gj.

Corollary. For each closed convex subset F of R" there exists a countable family
of closed halfspaces {H; : i € N} for which F = NjenH;.

Proof. Let {X; :i € N} be a countable dense subset of F¢. Definer; as the distance
from x; to F, which is strictly positive for every i, because F€ is open. The open
ball B(x,r;) with radius r; and center x; is convex and digoint from F. From
the previous Corollary, there exists a unit vector ¢ and a constant k; for which
iy >k > ¢ -xfordlye B(x,ri)andal x € F. DefineH; :={x € R": ¢;-x < ki}.
Each x in F¢ is the center of some open ball B(x, 3¢) digoint from F. There
is an x; with [x — x| < €. We then have r; > 2¢, because B(x, 3¢) D B(X;, 2¢), and
hence x — €¢; € B(X, ri). The separation inequality ¢; - (x — €£;) > k; then implies
£ - X > ki, thatlSX¢ H;.
Corollary. Let f be aconvex (real-valued) function defined on a convex subset C
of R", such that epi( f) is a closed subset of R™1. Then there exist {d; ;i € N} € R"
and {c; :i € N} C R such that f(x) = sup, (¢ +d - x) for every x in C.
Proof. From the previous Corollary, and the definition of epi(f), there exist ¢; € R"
and constants «j, ki € R such that

co>t> f(x)ifandonly if ki > ¢ - x — to; for ali € N.

The ith inequality can hold for arbitrarily large t only if o > 0. Define ¥ (x) :=
SUp,, .o (4i - X — ki) /. Clearly f(x) = ¢(x) for x e C. If s < f(x) foranx inC
then there must exist an i for which ¢ - x — f(X)a; < k < £ - X — saj, thereby
forcing o5 > 0 and s < ¥ (x).

Problems

Let f be the convex function, taking values in R U {co}, defined by
Fx.y) = {—yl/2 for0<landxeR
otherwise.

Let Tp denote the linear function defined on the x-axis by To(x, 0) := 0 for all
x € R. Show that T has no extension to a linear functional on R? for which
T(x,y) < f(x,y) everywhere, even though Tp < f aong the x-axis.

Suppose X is a random variable for which the moment generating function,
M(t) := Pexp(tX), exists (and is finite) for t in an open interval J about the origin
of the real line. Write P, for the probability measure with density X/Mt) with
respect to P, for t € J, with corresponding variance var;(-). Define A(t) ;= log M (t).

(i) Use Dominated Convergence to justify the operations needed to show that
A ) = M ®)/M1) =P(XeX/M(1)) =P X,
A" = (MOM”®) — M'1)%)/M®)? = var (X).
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(ii) Deduce that A is a convex function on J.

(iii) Show that A achievesits minimum at t = 0 if PX = 0.

Let Q be a probability measure defined on a finite interval [a, b]. Write aé for its

variance.

(i) Show that 03 < (b —a)?/4. Hint: Reduce to the case b = —a, noting that

aé < Q* (Xz).

(ii) Suppose also that Q*(x) = 0. Define A(t) :=log (Q*e*), for t € R. Show that
A"(t) < (b —a)?/4, and hence A(t) <t?(b—a)?/8for dl t € R.

(iii) (Hoeffding 1963) Let X4, ..., Xn be independent random, variables with zero
expected values, and with X; taking values only in afinite interval [a;, bj]. For
€ > 0, show that

P{X1+...+ Xy > €} < Enge‘“]"[iIPetxi <exp(—2¢%/ (b —a)?).

Let P be a probability measure on R¥. Define M(t); = P* (€*!) for t € R¥.
(i) Show that the set C := {t € R* : M(t) < oo} is convex.
(ii) Show that log M (t) is convex on rel-int(C).

Let f be a convex increasing function on R*. Show that there exists an increasing
sequence of convex, increasing functions f,, with each f” bounded and continuous,
such that 0 < f,(x) < f11(x) 1+ f(x) for each x. Hint: Approximate the right-hand
derivative of f from below by smooth, increasing functions.

Notes

Most of the material described in this Appendix can be found, often in much greater
generality, in the very thorough monograph by Rockafellar (1970).
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