Statistics 330b/600b, Math 330b spring 2011

Homework # 1 Due: Thursday 20 January

Please attempt at least the starred problems.

*[1] Suppose T maps a set \mathfrak{X} into a set \mathfrak{Y} . For each $B \subseteq \mathfrak{Y}$ and $A \subseteq \mathfrak{X}$ define $T^{-1}B := \{x \in \mathfrak{X} : T(x) \in B\}$. and $T(A) := \{T(x) : x \in A\}$. Some of the following eight assertions are true in general and some are false.

(i)
$$T(\cup_i A_i) = \cup_i T(A_i)$$
 (ii) $T^{-1}(\cup_i B_i) = \cup_i T^{-1}(B_i)$
(iii) $T(\cap_i A_i) = \cap_i T(A_i)$ (iv) $T^{-1}(\cap_i B_i) = \cap_i T^{-1}(B_i)$
(v) $T(A^c) = (T(A))^c$ (vi) $T^{-1}(B^c) = (T^{-1}(B))^c$
(vii) $T^{-1}(T(A)) = A$ (viii) $T(T^{-1}(B)) = B$

Provide counterexamples for each of the false assertions. You might find it helpful to contemplate the picture for a special case.

- *[2] Suppose a set \mathcal{E} of subsets of \mathcal{X} cannot separate a particular pair of points x, y, that is, for every E in \mathcal{E} , either $\{x, y\} \subseteq E$ or $\{x, y\} \subseteq E^c$. Show that $\sigma(\mathcal{E})$ also cannot separate the pair. Hint: Consider $\mathcal{D} := \{A \in \sigma(\mathcal{E}) : A \text{ does not separate } x \text{ and } y\}$.
- [3] Follow these steps to show that there cannot exist a translation invariant (countably additive) probability measure defined for the collection of all subsets of (0, 1]. For a and y in (0, 1] define

$$x \oplus y = \begin{cases} x+y & \text{if } x+y \le 1\\ x+y-1 & \text{if } x+y > 1 \end{cases}$$

For $A \subseteq (0,1]$ and $x \in (0,1]$ define $A \oplus x = \{y \oplus x : y \in A\}$. Suppose μ is a measure that is defined for all subsets of (0,1] for which $\mu(A \oplus x) = \mu A$ for all A and x. Define $Q = \{q \in (0,1] : q \text{ is rational }\}$. Define an equivalence relation on (0,1] by $x \sim y$ if $x = y \oplus r$ for some $r \in \mathcal{R}$. Let A be a set that contains exactly one point from each equivalence class.

- (i) Show that $A \oplus r$ and $A \oplus s$ are disjoint sets if r and s are distinct elements of Ω and that $(0, 1] = \bigcup_{r \in \Omega} (A \oplus r)$. Hint: The argument is much neater if you identify (0, 1] with the perimeter of a circle of circumference 1.
- (ii) Deduce that $\mu(0,1] = \sum_{r \in Q} \mu(A \oplus r)$.
- (iii) Show that

$$\mu(0,1] = \begin{cases} \infty & \text{if } \mu A > 0\\ 0 & \text{if } \mu A = 0 \end{cases}$$

Deduce that μ cannot be a probability measure (or any other non-trivial, finite measure).

