Statistics 330b/600b, Math 330b spring 2011

Homework # 10 Due: Thursday 7 April

Please attempt at least the starred problems.

- *[1] (conditional Jensen) UGMTP Problem 5.13.
- *[2] Suppose $X \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G} is a sub-sigma-field of \mathcal{F} . Let $X_{\mathcal{G}}$ be a version of $\mathbb{P}_{\mathcal{G}}X$. Define $\operatorname{var}_{\mathcal{G}}(X)$ to equal $\mathbb{P}_{\mathcal{G}}(X X_{\mathcal{G}})^2$. Show that

$$\operatorname{var}(X) = \mathbb{P}(\operatorname{var}_{\mathcal{G}} X) + \operatorname{var}(\mathbb{P}_{\mathcal{G}} X).$$

Remark: You could just expand both sides, but it is more instructive to argue first that, without loss of generality, $\mathbb{P}X = 0$. You should then recognize a familiar \mathcal{L}^2 fact.

- *[3] (An alternative to the method described in UGMTP §6.6.) Suppose $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Let $\{\mathcal{F}_n : n \in \mathbb{N}\}$ be a filtration on Ω (an increasing sequence of sub-sigma-fields of \mathcal{F}). Define $\mathcal{F}_{\infty} := \sigma(\mathcal{E})$ where $\mathcal{E} := \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$. For n in $\overline{\mathbb{N}} := \mathbb{N} \cup \{\infty\}$ define $X_n := \mathbb{P}_{\mathcal{F}_n} X$. Prove that $X_n \to X_\infty$ both almost surely and in \mathcal{L}^1 norm by the following steps.
 - (i) Explain why there is no loss of generality in assuming $X \ge 0$.
 - (ii) Explain why there exists an \mathcal{F}_{∞} -measurable random variable Z for which $X_n \to Z$ almost surely and $\mathbb{P}Z \leq \mathbb{P}X$.
 - (iii) Temporarily suppose $X \leq C$ for a finite constant C. Explain why $\mathbb{P}|X_n Z| \to 0$. For each F in \mathcal{E} , explain why $\mathbb{P}XF = \mathbb{P}X_nF$ for all large enough n. Explain why $\mathbb{P}X_nF \to \mathbb{P}ZF$. Deduce (via a generating class argument) that $Z = X_{\infty}$ almost surely.
 - (iv) For an unbounded X, explain why $X_n \geq \mathbb{P}_{\mathcal{F}_n}(X \wedge C) \to \mathbb{P}_{\mathcal{F}_\infty}(X \wedge C)$ almost surely, for each finite constant C. Deduce that $Z \geq \mathbb{P}_{\mathcal{F}_\infty}(X \wedge C)$ almost surely.
 - (v) Deduce that $\mathbb{P}Z = \mathbb{P}X$. Explain why $\mathbb{P}|X_n Z| = 2\mathbb{P}(Z X_n)^+ \to 0$.
 - (vi) Explain why $Z = X_{\infty}$ almost surely.
- [4] (Neyman factorization theorem cf. UGMTP Example 5.31) Suppose \mathbb{P} and \mathbb{P}_{θ} , for $\theta \in \Theta$, are probability measures defined on a sigma-field \mathcal{F} , for some index set Θ . Suppose also that \mathcal{G} is a sub-sigma-field of \mathcal{F} and that there exist versions of densities

$$\frac{d\mathbb{P}_{\theta}}{d\mathbb{P}} = g_{\theta}(\omega)h(\omega) \qquad \text{with } g_{\theta} \in \mathcal{M}^{+}(\mathcal{G}) \text{ for each } \theta$$

for a fixed $h \in \mathcal{M}^+(\mathcal{F})$ that doesn't depend on θ .

- (i) Define H to be a version of $\mathbb{P}_{\mathcal{G}}h$. [That is, choose one H from the \mathbb{P} -equivalence class of possibilities.] Show that $\mathbb{P}_{\theta}\{H=0\}=0=\mathbb{P}_{\theta}\{H=\infty\}$ for each θ .
- (ii) For each X in $\mathcal{M}^+(\mathcal{F})$, show that there exists a version of the conditional expectation $\mathbb{P}_{\theta}(X \mid \mathcal{G})$ that doesn't depend on θ , namely,

$$\mathbb{P}_{\theta}(X \mid \mathcal{G}) = \frac{\mathbb{P}_{\mathcal{G}}(Xh)}{H} \{ 0 < H < \infty \} \quad \text{a.e. } [\mathbb{P}_{\theta}] \text{ for every } \theta.$$