Statistics 330b/600b, Math 330b spring 2011

Homework # 11 Due: Thursday 14 April

Please attempt at least the starred problems.

- *[1] Suppose $X_n \to X$ almost surely, with $|X_n| \leq H$ for an H in $\mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Let \mathcal{G} be a sub-sigma-field of \mathcal{F} . Show that $\mathbb{P}_{\mathcal{G}}X_n \to \mathbb{P}_{\mathcal{G}}X$ almost surely. Hint: You could imitate the proof of Dominated Convergence given in class. You would first need to establish the analog of "Monotone Convergence down".
- [2] Let (\mathfrak{X}, d) be a metric space with a countable dense subset $\{x_i : i \in \mathbb{N}\}$. For a fixed $\epsilon > 0$ let B_i denote the open ball of radius ϵ and center x_i . Define functions $g_0 \equiv \epsilon$ and $g_i(x) = (1 d(x, B_i))^+$. Define $G_N(x) := \sum_{0 \leq i \leq N} g_i(x)$ and $\ell_{i,N}(x) = g_i(x)/G_N(x)$ for $0 \leq i \leq N$. Note that $\sum_{0 \leq i \leq N} \ell_{i,N} \equiv 1$.
 - (i) Show that $\ell_{i,N} \in BL(\mathfrak{X})$ for all i and N.
 - (ii) Show that $\ell_{0,N}(x) \downarrow L_{\epsilon}(x)$ with $L_{\epsilon}(x) < \epsilon$ for each x.
 - (iii) Show that diam $(\{\ell_{i,N} > 0\}) \le 4\epsilon$ for each $i \ge 1$.
- *[3] Suppose $(\mathfrak{X}, d_{\mathfrak{X}})$ and $(\mathfrak{Y}, d_{\mathfrak{Y}})$ are both separable metric spaces. Define a metric on $\mathfrak{X} \times \mathfrak{Y}$ by

$$d((x_1, y_1), (x_2, y_2)) := \max(d_{\mathfrak{X}}(x_1, x_2), d_{\mathfrak{Y}}(y_1, y_2))$$

Remark. By UGMTP Problem 4.6, $\mathcal{B}(\mathcal{X}) \otimes \mathcal{B}(\mathcal{Y}) = \mathcal{B}(\mathcal{X} \times \mathcal{Y})$. You may assume this fact.

Suppose $\{X_n : n \in \mathbb{N}\}\$ are random elements of \mathfrak{X} and $\{Y_n : n \in \mathbb{N}\}\$ are random elements of \mathfrak{Y} . Suppose μ is a probability measure on $\mathcal{B}(\mathfrak{X} \times \mathfrak{Y})$. Suppose also that

$$\mathbb{P}g(X_n)h(Y_n) \to \mu g(x)h(y)$$
 for all $g \in BL(\mathfrak{X}, d_{\mathfrak{X}})$ and $h \in BL(\mathfrak{Y}, d_{\mathfrak{Y}})$.

Follow these steps to prove that $(X_n, Y_n) \rightsquigarrow \mu$.

(i) Fix an $\epsilon > 0$. Define $\ell_{i,N}$ as in Problem 2. For each f in BL($\mathfrak{X} \times \mathfrak{Y}, d$) show that

$$|f(x,y) - \sum_{1 \le i \le N} f(x_i, y)\ell_{i,N}(x)| \le ||f||_{\mathrm{BL}} \left(\ell_{0,N}(x) + 4\epsilon\right)$$

(ii) For an appropriate choice of N, deduce that

$$\limsup_{n} |\mathbb{P}f(X_n, Y_n) - \mu f| \le Ce$$

for some constant C.

- (iii) Complete the proof.
- *[4] Suppose $(X_n, \mathcal{F}_n) : n = 0, 1, ..., n$ is a martingale with $X_0 = 0$ and increments $\xi_i = X_i X_{i-1}$ for which there exist finite constants a_i, b_i with $a_i \leq \xi_i \leq b_i$ almost surely. Prove the Hoeffding inequality for martingales: for each y > 0,

$$\mathbb{P}\{X_n \ge y\} \le \exp\left(-2y^2/K\right) \qquad \text{where } K = \sum_{i=1}^n (B_i - a_i)^2$$

Follow these steps.

(i) For each $\theta > 0$ and constants a < b, show that

$$e^{x\theta} \le \frac{b-x}{b-a}e^{\theta a} + \frac{x-a}{b-a}e^{\theta b}$$
 for all $a \le x \le b$.

(ii) For constants a < 0 < b, prove that

$$\frac{b}{b-a}e^{a\theta} - \frac{a}{b-a}e^{b\theta} \le \exp\left(\frac{1}{8}\theta^2(b-a)^2\right) \quad \text{for all } \theta > 0.$$

Hint: Consider a random variable Y for which $\mathbb{P}\{Y = a\} + \mathbb{P}\{Y = b\} = 1$ and $\mathbb{P}Y = 0$. You may use results proved in class.

(iii) If Z is a random variable with $\mathbb{P}_{\mathcal{G}}Z=0$ and $a\leq Z\leq b$ almost surely, show that

$$\mathbb{P}_{\mathcal{G}}e^{\theta Z} \le \exp\left(\frac{1}{8}\theta^2(b-a)^2\right)$$
 almost surely.

(iv) Complete the proof.