Statistics 330b/600b, Math 330b spring 2011

Homework # 2

Due: Thursday 27 January

Please attempt at least the starred problems.

- *[1] Suppose $T: \mathcal{X} \to \mathcal{Y}$. Let \mathcal{A} be a sigma-field of subsets of \mathcal{X} and \mathcal{B} be a sigma-field of subsets of \mathcal{Y} .
 - (i) Show that $\mathcal{B}_0 := \{B \subseteq \mathcal{Y} : T^{-1}(B) \in \mathcal{A}\}$ is the largest sigma-field on \mathcal{Y} for which T is $\mathcal{A} \setminus \mathcal{B}_0$ -measurable.
 - (ii) Show that $A_0 := \{T^{-1}B : B \in \mathcal{B}\}$ is the smallest sigma-field on \mathcal{X} for which T is $A_0 \setminus \mathcal{B}$ -measurable. [Note: The sigma-field A_0 is often denoted by $\sigma(T)$ without explit mention of \mathcal{B} .]
- *[2] Let T and $\sigma(T)$ be as in Problem [1]. Show that to each f in $\mathcal{M}^+(\mathfrak{X}, \sigma(T))$ there exists a g in $\mathcal{M}^+(\mathfrak{Y}, \mathfrak{B})$ such that $f = g \circ T$ (that is, f(x) = g(T(x)), for all x in \mathfrak{X}) by following these steps.
 - (i) If f is the indicator function of $T^{-1}(B)$ and g is the indictor function of B, show that $f = g \circ T$. Hint: If you write f as $\{x \in T^{-1}B\}$ and g as $\{y \in B\}$ there is hardly anything to prove.
 - (ii) Consider the case where $f \in \mathcal{M}^+_{\text{simple}}(\mathcal{X}, \sigma(T))$.
 - (iii) Suppose $f_n = g_n \circ T$ is a sequence in $\mathcal{M}^+_{\text{simple}}(\mathfrak{X}, \sigma(T))$ that increases pointwise to f. Define $g(y) = \limsup g_n(y)$ for each y in \mathcal{Y} . Show that g has the desired property.
 - (iv) In part (iii), why can't we assume that $\lim g_n(y)$ exists for each y in \mathcal{Y} ?
- *[3] Suppose $f_1, \ldots, f_k \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$ and $\theta_1, \ldots, \theta_k$ are strictly positive numbers that sum to one. Let μ be a measure on \mathcal{A} . Show that

$$\mu \prod_{i \le k} f_i^{\theta_i} \le \prod_{i \le k} (\mu f_i)^{\theta_i}$$

by following these steps.

- (i) Explain why the inequality is trivially true if $\mu f_i = 0$ for at least one i or if $\mu f_i = \infty$ for at least one i (and all the other μf_j are strictly positive).
- (ii) Explain why there is no loss of generality in assuming that $\mu f_i = 1$ for each i and $f_i(x) < \infty$ for each x and i.
- (iii) For all $a_1, \ldots, a_k \in \mathbb{R}^+$, show that $\prod_{i \leq k} a_i^{\theta_i} \leq \sum_{i \leq k} \theta_i a_i$. Hint: First dispose of the trivial case where at least one a_i is zero, then rewrite the inequality using $b_i = \log a_i$.
- (iv) Complete the proof by considering the inequality from (iii) with $a_i = f_i(x)$.
- [4] (inner/outer regularity) UGMTP Problem 2.12.