Statistics 330b/600b, Math 330b spring 2011

Homework # 3 Due: Thursday 3 February

Please attempt at least the starred problems.

- *[1] For f in $\mathcal{L}^{1}(\mu)$ define $||f||_{1} = \mu |f|$. Let $\{f_{n}\}$ be a Cauchy sequence in $\mathcal{L}^{1}(\mu)$, that is, $||f_{n} - f_{m}||_{1} \to 0$ as $\min(m, n) \to \infty$. Show that there exists an f in $\mathcal{L}^{1}(\mu)$ for which $||f_{n} - f||_{1} \to 0$, by following these steps. Note: Don't confuse Cauchy sequences (in \mathcal{L}^{1} distance) of functions with Cauchy sequences of real numbers.
 - (i) Find an increasing sequence $\{n(k)\}$ such that $\sum_{k=1}^{\infty} \left\|f_{n(k)} f_{n(k+1)}\right\|_1 < \infty$. Deduce that the function $H := \sum_{k=1}^{\infty} |f_{n(k)} f_{n(k+1)}|$ is integrable.
 - (ii) Show that there exists a real-valued, measurable function f for which

 $H \ge |f_{n(k)}(x) - f(x)| \to 0$ as $k \to \infty$, for μ almost all x.

Deduce that $\|f_{n(k)} - f\|_1 \to 0$ as $k \to \infty$.

- (iii) Show that f belongs to $\mathcal{L}^1(\mu)$ and $||f_n f||_1 \to 0$ as $n \to \infty$.
- *[2] (Orlicz norms) UGMTP Problem 2.22.
- *[3] For each convex, real valued function Ψ on the real line there exists a countable family of linear functions for which $\Psi(x) = \sup_{i \in \mathbb{N}} (a_i + b_i x)$ for all x (see Appendix C of UGMTP). Use this representation to prove Jensen's inequality: if $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, with \mathbb{P} a probability measure, then $\mathbb{P}\Psi(X) \geq \Psi(\mathbb{P}X)$. Hint: If $Y \geq Z$ and $\mathbb{P}Z^- < \infty$ then $\mathbb{P}Y^- < \infty$.
- [4] Suppose \mathcal{A} is a sigma-field of subsets of \mathfrak{X} and \mathfrak{N} is a set of subsets of \mathfrak{X} that is stable under countable unions. Define

 $\mathcal{B} := \{ B \subseteq \mathfrak{X} : |B - A| \le N \text{ for some } A \in \mathcal{A} \text{ and some } N \in \mathcal{N} \}.$

Note: $|B - A| \leq N$ could also be written $A\Delta B \subseteq N$, but that form is harder to work with.

- (i) Show that \mathcal{B} is a sigma-field.
- (ii) If μ is a countably additive measure on \mathcal{A} , show that $\mathcal{N}_{\mu} := \{N \in \mathcal{A} : \mu N = 0\}$ is stable under countable unions.
- (iii) With $\mathcal{N} = \mathcal{N}_{\mu}$ and \mathcal{B} as in (i), show that μ has a unique extension to a countably additive measure $\tilde{\mu}$ on \mathcal{B} with $\tilde{\mu}B = \mu A$ if $A \in \mathcal{A}$ and $|B A| \leq N \in \mathcal{N}_{\mu}$.
- [5] For each θ in [0, 1] let $P_{n,\theta}$ be the Binomial (n, θ) distribution. That is,

$$P_{n,\theta}\{k\} = \binom{n}{k} \theta^k (1-\theta)^{n-k} \quad \text{for } k = 0, 1, \dots, n$$

You may assume these elementary facts:

$$P_{n,\theta}^x x = \sum_{k=0}^n k P_{n,\theta}\{k\} = n\theta$$
$$P_{n,\theta}^x (x - n\theta)^2 = \sum_{k=0}^n (k - n\theta)^2 P_{n,\theta}\{k\} = n\theta(1 - \theta)$$

Let f be a continuous function defined on [0, 1]. Remember that f is also uniformly continuous: for each fixed ϵ there exists a $\delta > 0$ such that

 $(*) \qquad |f(s) - f(t)| \leq \epsilon \qquad \text{whenever } |s - t| \leq \delta, \text{ for } s, t \text{ in } [0, 1].$

Remember also that |f| must be uniformly bounded.

- (i) Show that $p_n(\theta) := P_{n,\theta}^x f(x/n)$ is a polynomial in θ .
- (ii) Suppose $|f| \leq M$, for a constant M. Show that

$$|f(x/n) - f(\theta)| \le \epsilon + 2M\{ |(x/n) - \theta| > \delta\} \le \epsilon + \frac{2M|x - n\theta|^2}{n^2\delta^2}.$$

where ϵ and δ are as in (*).

(iii) Deduce that $\sup_{0 \le \theta \le 1} |p_n(\theta) - f(\theta)| < 2\epsilon$ for *n* large enough. That is, deduce that $f(\cdot)$ can be uniformly approximated by polynomials over the range [0, 1], a result known as the *Weierstrass approximation theorem*.