Statistics 330b/600b, Math 330b spring 2011

Homework # 5 Due: Thursday 17 February

Please attempt at least the starred problems.

- *[1] Let μ be a countably additive measure on $(\mathfrak{X}, \mathcal{A})$. Prove that μ is sigma-finite if and only if there exists some \mathcal{A} -measurable function g taking values in $(0, \infty)$ (that is, g is strictly positive and real valued) for which $\mu g < \infty$.
- *[2] In class I sketched a proof of the Tonelli theorem (UGMTP Theorem 4.25) for the case of finite measures, μ on $(\mathfrak{X}, \mathcal{A})$ and ν on $(\mathfrak{Y}, \mathfrak{B})$.
 - (i) Give a complete, rigorous proof of this version of the Theorem, using lambda-space results as on the handout *lambda-space.pdf*. Do not use λ -cones, and do not prove the corresponding theorem with ν replaced by a kernel, as in UGMTP §4.3.
 - (ii) Extend the result from part (i) to the case of sigma-finite μ and ν by the following method. From Problem [1] there exist strictly positive, measurable functions g on \mathfrak{X} and h on \mathfrak{Y} for which $\mu g < \infty$ and $\nu h < \infty$. Define finite measures by $d\mu_0/d\mu = g$ and $d\nu_0/d\nu = h$. Deduce all necessary facts for μ and ν from the corresponding facts for μ_0 and ν_0 .
- [3] Homework Problem 3.2 asked you to prove facts about the Orlicz norm: $||f||_{\Psi} = \inf\{c > 0 : \mu \Psi(|f|/c) \le 1\}$. Many of you assumed that $\mu \Psi(|f|/c) \le 1$ when $c = ||f||_{\Psi}$, that is, that the infimum is achieved. Prove (rigorously) that the assumption is correct, at least when $0 < ||f||_{\Psi} < \infty$.
- [4] The integrability assumption for Fubini and the sigma-finiteness for Tonelli are needed:
 - (i) UGMTP Problem 4.12
 - (ii) UGMTP Problem 4.13
- [5] (Hellinger distance between product measures) UGMTP Problem 4.18.