Statistics 330b/600b, Math 330b spring 2011

Homework # 7 Due: Thursday 3 March

Please attempt at least the starred problems.

- *[1] Suppose $S_i = \xi_1 + \dots + \xi_i$ for $i = 1, 2, \dots, n$, where $\{\xi_j : j = 1, 2, \dots, n\}$ are iid with $\mathbb{P}\{\xi_j = -1\} = 1/2 = \mathbb{P}\{\xi_j = +1\}.$
 - (i) For each ω define $\sigma(\omega)$ as the smallest j for which $S_j(\omega) = \max_i S_i(\omega)$. Explain why $S_{\sigma} \geq S_1$ everywhere, with strict inequality on a set with probability at least 1/2. Deduce that $\mathbb{P}S_{\sigma} > \mathbb{P}S_1$. Why does this result not contradict the Stopping Time Lemma?
 - (ii) Explain why the following argument is wrong. Define $\tau = \inf\{i : S_i \ge 2\}$. Clearly $S_{\tau} \ge 2$ almost surely, which implies $\mathbb{P}S_{\tau} \ge 2 > \mathbb{P}S_1$.
 - (iii) Suppose we actually have an infinite sequence of iid ξ_j 's with $\mathbb{P}\{\xi_j = -1\} = 1/2 = \mathbb{P}\{\xi_j = +1\}$. Define $S_i = \xi_1 + \cdots + \xi_i$ for $i \in \mathbb{N}$. Define $\tau = \inf\{i : S_i \ge 2\}$. Clearly $S_{\tau} \ge 2$ almost surely, which implies $\mathbb{P}S_{\tau} \ge 2 > \mathbb{P}S_1$. Why does this result not contradict the Stopping Time Lemma?
- *[2] Suppose \mathcal{A}_i is a sigma-field on a set \mathfrak{X}_i , for i = 0, 1, 2. Suppose also that $T_i : \mathfrak{X}_0 \to \mathfrak{X}_i$ is $\mathcal{A}_0 \setminus \mathcal{A}_i$ -measurable, for i = 1, 2. Define $S : \mathfrak{X}_0 \to \mathfrak{X}_1 \times \mathfrak{X}_2$ by $S(x) = (T_1(x), T_2(x))$. Show that S is $\mathcal{A}_0 \setminus \mathcal{A}_1 \otimes \mathcal{A}_2$ -measurable.
- [3] Suppose W and Z are nonnegative random variables with $||Z||_p < \infty$ for some p > 1. Suppose also that there exists positive constants β and C for which

 $t\mathbb{P}\{W > \beta t\} \le C\mathbb{P}Z\{W > t\} \qquad \text{for all } t > 0.$

Show that $||W||_p \leq Cp\beta^p ||Z||_p / (p-1)$. To make things slightly easier, I will let you assume that $||W||_p < \infty$. For a truly virtuoso effort, you might also show that the finiteness of $||W||_p$ actually follows from the finiteness of $||Z||_p$.

*[4] (Doob's \mathcal{L}^p maximal inequality) UGMTP Problem 6.9. You may appeal to the result from Problem 3 to eliminate some of the steps suggested in the book.