Statistics 330b/600b, Math 330b spring 2011

Homework # 9 Due: Thursday 31 March

Please attempt at least the starred problems. Assume that all random variables are defined on the same Ω , for a given probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

- [1] Suppose X, X_1, X_2, \ldots are real valued random variables. In class I used Dominated Convergence to show that $X_n \to X$ in probability if $X_n \to X$ almost surely. Here are some similar facts.
 - (i) If $X_n \to X$ in probability show that there exists a subsequence $\{X_{n(i)} : i \in \mathbb{N}\}$ that converges to X almost surely. Hint: Start by explaining why there exists an n(i) for which $\mathbb{P}\{|X_n X| > 2^{-i}\} < 2^{-i}$ for all $n \ge n(i)$.
 - (ii) If there exists a $\delta > 0$ for which $\mathbb{P}\{|X_n X| > \delta\} \ge \delta$ for all n, show that there exists no subsequence along which $X_{n(i)} \to X$ almost surely.
 - (iii) Show that $X_n \to X$ in probability if and only if for each subsequence $\{X_{n(i)} : i \in \mathbb{N}\}$ there exists a sub-subsequence $\{X_{n(i_j)} : j \in \mathbb{N}\}$ that convergences almost surely to X.
- [2] Suppose $X_n \to X$ in probability. Use the results from Problem 1 to establish the following facts.
 - (i) If f is a measurable real valued function that is continuous at each point of some measurable set C for which $\mathbb{P}\{X \in C\} = 1$, show that $f(X_n) \to f(X)$ in probability.
 - (ii) Suppose there exists an integrable random variable W for which $W \ge |X_n|$ almost surely for each n. Show that $\mathbb{P}|X_n X| \to 0$.
- *[3] Suppose $\{A_n : n \in \mathbb{N}\}$ is a sequence of exchangeable events, that is, for each k, the joint distribution of A_1, \ldots, A_k is the same as the joint distribution of A_{i_1}, \ldots, A_{i_k} for all distinct i_1, \ldots, i_k . Define $T_n = (A_1 + \cdots + A_n)/n$.
 - (i) For n < m show that $\mathbb{P}|T_n T_m|^2 \le n^{-1} + m^{-1}$. Deduce that there exists a random variable T for which $\mathbb{P}|T_n T|^2 \to 0$.

Write Q for the distribution of T. You may assume that conditional distributions $\{\mathbb{P}_t : 0 \leq t \leq 1\}$ exist. That is, $\mathbb{P}F = Q^t \mathbb{P}_t F$ for each F in \mathfrak{F} .

(ii) In class I argued that $\mathbb{P}_t(A_i) = t$ almost surely, as follows: For each bounded continuous real function g on [0, 1], I argued informally that

$$\mathbb{P}A_ig(T_n) = \mathbb{P}T_ng(T_n) \to \mathbb{P}Tg(T) = Q^t tg(t)$$
$$\mathbb{P}A_ig(T_n) \to \mathbb{P}A_ig(T) = Q^t(g(t)\mathbb{P}_t A_i)$$

I then asserted that, by sort sort of generating class argument, it follows that $\mathbb{P}_t A_1 = t$ a.e. [Q]. Make the whole argument from class completely rigorous.

(iii) Extend the argument to prove that $\mathbb{P}_t(A_iA_jA_k) = t^3$ a.e. [Q] each triple (i, j, k) of distinct positive integers.