Statistics 330b/600b, Math 330b spring 2013

Homework # 1 Due: Thursday 24 January

Please attempt at least the starred problems.

*[1] Suppose T maps a set \mathfrak{X} into a set \mathfrak{Y} . For each $B \subseteq \mathfrak{Y}$ and $A \subseteq \mathfrak{X}$ define $T^{-1}B := \{x \in \mathfrak{X} : T(x) \in B\}$. and $T(A) := \{T(x) : x \in A\}$. Some of the following eight assertions are true in general and some are false.

(i)
$$T(\cup_i A_i) = \cup_i T(A_i)$$
 (ii) $T^{-1}(\cup_i B_i) = \cup_i T^{-1}(B_i)$
(iii) $T(\cap_i A_i) = \cap_i T(A_i)$ (iv) $T^{-1}(\cap_i B_i) = \cap_i T^{-1}(B_i)$
(v) $T(A^c) = (T(A))^c$ (vi) $T^{-1}(B^c) = (T^{-1}(B))^c$
(vii) $T^{-1}(T(A)) = A$ (viii) $T(T^{-1}(B)) = B$

Provide counterexamples for each of the false assertions. You might find it helpful to contemplate the picture for a special case.

*[2] A field on \mathfrak{X} is an $\mathfrak{F} \subseteq 2^{\mathfrak{X}}$ (that is, \mathfrak{F} is a set of subsets of \mathfrak{X}) that contains \emptyset and is stable under complements, finite unions, and finite intersections. If $\mathcal{E} \subseteq 2^{\mathfrak{X}}$ then

$$FIELD(\mathcal{E}) := \bigcap \{ \mathcal{D} : \mathcal{D} \supseteq \mathcal{E} \text{ and } \mathcal{D} \text{ is a field on } \mathcal{X} \}$$

is the smallest field \mathcal{D} on \mathfrak{X} for which $\mathcal{D} \supseteq \mathcal{E}$. (Proof?)

In class, I outlined a proof of the following fact for each probability measure μ on $\sigma(\mathcal{E})$: for each $A \in \sigma(\mathcal{E})$ and each $\epsilon > 0$ there exists and F in FIELD(\mathcal{E}) for which $\mu(A\Delta F) < \epsilon$. The proof started with: let \mathcal{A}_0 be the set of all A's in $\sigma(\mathcal{E})$ with the desired property. Then I proceeded to argue that $\mathcal{E} \subseteq \mathcal{A}_0$ and \mathcal{A}_0 is a sigma-field. Along the way I skipped over a few points. Write out a complete proof with all the details. Please use only Boolean algebra and the properties of μ as a measure on $\sigma(\mathcal{E})$; don't use any of the integral properties that make the proof so much easier.

- [3] Suppose a set \mathcal{E} of subsets of \mathcal{X} cannot separate a particular pair of points x, y, that is, for every E in \mathcal{E} , either $\{x, y\} \subseteq E$ or $\{x, y\} \subseteq E^c$. Show that $\sigma(\mathcal{E})$ also cannot separate the pair. Hint: Consider $\mathcal{D} := \{A \in \sigma(\mathcal{E}) : A \text{ does not separate } x \text{ and } y\}$.
- [4] For the extended real line $\overline{\mathbb{R}} = [-\infty, \infty]$, define $\mathcal{E} := \{[-\infty, t] : t \in \overline{\mathbb{R}}\}$. Show that a subset A of $\overline{\mathbb{R}}$ belongs to $\mathcal{A} := \sigma(\mathcal{E})$ if and only if $A \cap \mathbb{R} \in \mathcal{B}(\mathbb{R})$.

y