Statistics 330b/600b, Math 330b spring 2013 Homework # 10 Due: Thursday 18 April

Please attempt at least the starred problems.

*[1] For a fixed n let μ denote counting measure on $\mathfrak{X} = \{0, 1, \dots, n\}$. For each θ in $\Theta = (0, 1)$ let \mathbb{P}_{θ} denote the Bin (n, θ) probability measure, which has density

$$p(x,\theta) = {\binom{n}{x}} \theta^x (1-\theta)^{n-x}$$
 with respect to μ .

Let T denote the map that projects $\mathfrak{X} \times \Theta$ onto \mathfrak{X} . That is, $T(x, \theta) = x$. Suppose the prior π has density

 $g(\theta) = \theta^{-1}(1-\theta)^{-1}$ with respect to Lebesgue measure \mathfrak{m} on $\mathcal{B}(\Theta)$

Let $\lambda = \mu \otimes \mathfrak{m}$ and $\mathbb{P} = \pi \otimes \mathcal{P}$ where $\mathcal{P} = \{\mathbb{P}_{\theta} : \theta \in \Theta\}$. [Despite the choice of letter, \mathbb{P} is not a probability measure.]

- (i) Find the density of \mathbb{P} with respect to $\mu \otimes \mathfrak{m}$.
- (ii) Define $\mathbb{Q} = T\mathbb{P}$. Find $\mathbb{Q}\{x\}$ for each x in \mathfrak{X} .
- (iii) Find a collection of measures $\Gamma = \{\gamma_x : x \in \mathcal{X}\}$ on $\mathcal{B}(\Theta)$ for which $\mathbb{P} = \mu \otimes \Gamma$. That is, $\mathbb{P}f(x,\theta) = \mu^x \gamma_x^\theta f(x,\theta)$ for each nonnegative, jointly measurable f on $\mathcal{X} \times \Theta$. [In other words, the set of measures $\{\delta_x \otimes \gamma_x : x \in \mathcal{X}\}$ is a T, μ -disintegration of \mathbb{P} .] You should be able to spot a suitable Γ without much calculation.
- (iv) Show that there does not exist a T, \mathbb{Q} -disintegration of \mathbb{P} . Hint: Consider what such a disintegration would say about $\mathbb{P}\{x=0, |\theta|<1/2\}$.

Remark. The measure γ_x plays the role of the posterior distribution. For example, in decision theory using squared error loss, the function $\delta(x)$ that minimizes $\gamma_x^{\theta}(\theta - \delta(x))^2$ for each x has useful properties.

*[2] Let μ denote counting measure on $\{1, 2\}$ and λ denote Lebesgue measure on $\mathcal{B}(\mathbb{R})$. For each $\theta = (\alpha, \gamma_1, \gamma_2)$ in $\Theta := (0, 1) \times \mathbb{R}^2$ define

$$f(x, y, \theta) = \alpha \{ y = 1 \} \phi(x - \gamma_1) + (1 - \alpha) \{ y = 2 \} \phi(x - \gamma_2),$$

a probability density with respect to $\lambda \times \mu$. (Here ϕ is the N(0, 1) density function.) The marginal density for x is the mixture $\alpha \phi(x - \gamma_1) + (1 - \alpha)\phi(x - \gamma_2)$.

For $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$ define

$$p(\mathbf{x}, \mathbf{y}, \theta) = \prod_{i \le n} f(x_i, y_i, \theta)$$

- (i) Find the maximum likelihood estimator for θ based on x and y.
- (ii) Now suppose we only observe **x**. The marginal density for **x** is $\nu^{\mathbf{y}} p(\mathbf{x}, \mathbf{y}, \theta)$ where ν is the *n*-fold product measure μ^n . The EM algorithm iteratively updates an estimate θ_0 by the value θ_1 that maximizes the function

$$H_{\theta_0}(\theta) = \mathbb{P}_{\theta_0}\left(\log p(\mathbf{x}, \mathbf{y}, \theta) \mid \mathbf{x}\right).$$

Find the value for θ_1 .