Statistics 330b/600b, Math 330b spring 2013

Homework # 2 Due: Thursday 31 January

Please attempt at least the starred problems.

*[1] Suppose \mathcal{A} is a sigma-field on a set \mathfrak{X} and μ is a measure on \mathcal{A} . Write \mathbb{N} for $\{N \in \mathcal{A} : \mu N = 0\}$. Define

$$\mathcal{A}_{\mu} := \{ B \subseteq \mathfrak{X} : \exists A \in \mathcal{A}, N \in \mathbb{N} \text{ such that } |B - A| \le N \}.$$

- (i) Show that \mathcal{A}_{μ} is a sigma-field. Hint: If $\{B_i : i \in \mathbb{N}\} \subseteq \mathcal{A}_{\mu}$ and $|B_i A_i| \leq N_i$, show that $|\bigcup_i B_i \bigcup_i A_i| \leq \bigcup_i N_i$.
- (ii) If $|B A_i| \leq N_i$ for i = 1, 2, with $A_i \in \mathcal{A}$ and $N_i \in \mathcal{N}$, show that $\mu A_1 = \mu A_2$. Hint: Show $A_1 \leq A_2 + N_1 + N_2$.
- (iii) If $|B A| \leq N$ with $A \in A$ and $N \in \mathbb{N}$ define $\nu B = \mu A$. Show that ν is a measure on \mathcal{A}_{μ} whose restriction to \mathcal{A} equals μ .
- *[2] Suppose $f_1, \ldots, f_k \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$ and $\theta_1, \ldots, \theta_k$ are strictly positive numbers that sum to one. Let μ be a measure on \mathcal{A} . Show that

$$\mu \prod_{i \le k} f_i^{\theta_i} \le \prod_{i \le k} (\mu f_i)^{\theta_i}$$

by following these steps.

- (i) Explain why the inequality is trivially true if $\mu f_i = 0$ for at least one *i* or if $\mu f_i = \infty$ for at least one *i* (and all the other μf_i are strictly positive).
- (ii) Explain why there is no loss of generality in assuming that $\mu f_i = 1$ for each i and $f_i(x) < \infty$ for each x and i.
- (iii) For all $a_1, \ldots, a_k \in \mathbb{R}^+$, show that $\prod_{i \leq k} a_i^{\theta_i} \leq \sum_{i \leq k} \theta_i a_i$. Hint: First dispose of the trivial case where at least one a_i is zero, then rewrite the inequality using $b_i = \log a_i$. You do not need to reprove that the log function is concave on $(0, \infty)$.
- (iv) Complete the proof by considering the inequality from (iii) with $a_i = f_i(x)$.

Remark. Textbooks often contain the the special case where k = 2 and $\theta_1 = 1/p$ and $\theta_2 = 1/q$ and $f_1 = |g_1|^p$ and $f_2 = |g_2|^q$, with the assertion that $|\mu(g_1g_2)| \le \mu |g_1g_2| \le (\mu |g_1|^p)^{1/p} (\mu |g_2|^q)^{1/q}$.

[3] Suppose f_1, \ldots, f_n are functions in \mathcal{M}^+ and μ is a measure for which $\mu f_i < \infty$ for each *i*. Show that

$$\sum_{i} \mu f_{i} - \sum_{i < j} \mu(f_{i} \wedge f_{j})$$

$$\leq \mu (\max_{i} f_{i})$$

$$\leq \sum_{i} \mu f_{i} - \sum_{i < j} \mu(f_{i} \wedge f_{j}) + \sum_{i < j < k} \mu(f_{i} \wedge f_{j} \wedge f_{k}).$$

Hint: For fixed nonnegative numbers a_1, \ldots, a_n establish inequalities like $\sum_i a_i \leq \max_i a_i + \sum_{i < j} a_i \wedge a_j$. For simplicity assume $a_1 \geq a_2 \geq \cdots \geq a_n \geq 0$ then consider the coefficients of each a_k .