Statistics 330b/600b, Math 330b spring 2013 Homework # 4 Due: Thursday 14 February

Please attempt at least the starred problems.

- *[1] Let $D = \{(x, y) \in \mathbb{R}^2 : x = y\}.$
 - (i) For each pair A, B in $\mathcal{B}(\mathbb{R})$, show that $D \neq A \times B$.
 - (ii) Show that $D \in \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.
- [2] Suppose \mathcal{E}_0 is a (nonempty) collection of subsets of some set \mathfrak{X} . For each $n \in \mathbb{N}$ define \mathcal{E}_n to be the collection of all subsets of the form E_1^c or $E_1 \cup E_2$ or $E_1 \cap E_2$ with $E_i \in \mathcal{E}_{n-1}$. Define $\mathcal{F} := \bigcup_{n \in \mathbb{N}} \mathcal{E}_n$.
 - (i) Show that \mathcal{F} is a field on \mathfrak{X} . (That is, $\emptyset \in \mathcal{F}$ and \mathcal{F} is stable under finite unions, finite intersections, and complements.)
 - (ii) If \mathcal{G} is a field on \mathfrak{X} for which $\mathcal{G} \supseteq \mathcal{E}_0$, show that $\mathcal{G} \supseteq \mathcal{F}$.
 - (iii) If \mathcal{E}_0 is countable show that \mathcal{F} is countable.
 - (iv) A sigma field \mathcal{A} on \mathfrak{X} is said to be **countably generated** if $\mathcal{A} = \sigma(\mathcal{E})$ for some countable \mathcal{E} . Explain why \mathcal{E} can always be assumed to be a field.
- *[3] Suppose \mathcal{A} is a sigma-field on a set \mathfrak{X} and \mathcal{B} is a countably generated sigma-field on a set \mathcal{Y} . Suppose also that \mathcal{B} separates the points of \mathcal{Y} , in the sense of HW1.2: if $y_1 \neq y_2$ then there exists a set $B \in \mathcal{B}$ for which $y_1 \in B$ and $y_2 \in B^c$. For each $\mathcal{A} \setminus \mathcal{B}$ measurable map T from \mathfrak{X} to \mathcal{Y} show that the set $D = \{(x, y) \in \mathfrak{X} \times \mathcal{Y} : y = Tx\}$ belongs to $\mathcal{A} \otimes \mathcal{B}$. Hint: If \mathcal{B} is generated by a countable field \mathcal{F} , consider the set $\bigcup_{F \in \mathcal{F}} (T^{-1}F^c) \times F$.
- [4] Suppose \mathcal{A} and \mathcal{B} are countably generated sigma-fields, on the sets \mathfrak{X} and \mathcal{Y} respectively. Show that $\mathcal{A} \otimes \mathcal{B}$ is countably generated.
- [5] Let X and Y be topological spaces equipped with their Borel sigma-fields B(X) and B(Y). Equip X×Y with the product topology and its Borel sigma-field B(X×Y). (The open sets in the product space are, by definition, all possible unions of sets G×H, with G open in X and H open in Y.)
 - (i) Show that $\mathcal{B}(\mathfrak{X}) \otimes \mathcal{B}(\mathfrak{Y}) \subseteq \mathcal{B}(\mathfrak{X} \times \mathfrak{Y}).$
 - (ii) A topology \mathcal{G}_1 is said to be countably generated if there exists a countable $\mathcal{G}_2 \subseteq \mathcal{G}_1$ such that $G = \bigcup \{ H \in \mathcal{G}_2 : H \subseteq G \}$ for each $G \in \mathcal{G}_1$. If both \mathfrak{X} and \mathfrak{Y} have countably generated topologies, prove equality of the two sigma-fields (from part (ii)) on the product space.
 - (iii) Show that $\mathcal{B}(\mathbb{R}^n) = \mathcal{B}(\mathbb{R}^k) \otimes \mathcal{B}(\mathbb{R}^{n-k})$.
- *[6] Suppose X is a real valued random variable, defined on a set Ω equipped with a sigma-field \mathcal{F} . Show that the set $\{(\omega, t) \in \Omega \times \mathbb{R} : X(\omega) > t\}$ belongs to $\mathcal{F} \otimes \mathcal{B}(\mathbb{R})$.
- [7] Suppose μ and ν are finite measures on $\mathcal{B}(\mathbb{R})$. Let f be the indicator function of the set $\{(x, y) \in \mathbb{R}^2 : x = y\}$.
 - (i) Show that the set $A_{\nu} := \{x \in \mathbb{R} : \nu\{x\} > 0\}$ contains at most countably many points.
 - (ii) Show that $\mu \otimes \nu f(x, y) = \sum_{x \in A_{\nu}} \mu\{x\} \nu\{x\}$. Hint: First write $\nu^{y} f(x, y)$ as a sum of at most countably many terms.