Statistics 330b/600b, Math 330b spring 2013 Homework # 5 Due: Thursday 21 February

Please attempt at least the starred problems.

- *[1] For each convex, real valued function Ψ on the real line there exists a countable family of linear functions for which $\Psi(x) = \sup_{i \in \mathbb{N}} (a_i + b_i x)$ for all x (see Appendix C of UGMTP). Use this representation to prove **Jensen's inequality**: if $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$, with \mathbb{P} a probability measure, then $\mathbb{P}\Psi(X) \geq \Psi(\mathbb{P}X)$. You should first show that $\mathbb{P}\Psi(X)^- < \infty$, to ensure that $\mathbb{P}\Psi(X)$ is well defined.
- [2] In class I outlined a proof (using the $\pi \lambda$ theorem) of the following result:

Let $\mathcal{E}_1, \ldots, \mathcal{E}_n$ be classes of measurable sets, each class stable under finite intersections and containing the whole space Ω . If

$$\mathbb{P}(E_1 E_2 \dots E_n) = (\mathbb{P}E_1)(\mathbb{P}E_2) \dots (\mathbb{P}E_n) \quad \text{for all } E_i \in \mathcal{E}_i, \text{ for } i = 1, 2, \dots, n,$$

then the sigma-fields $\sigma(\mathcal{E}_1), \sigma(\mathcal{E}_2), \ldots, \sigma(\mathcal{E}_n)$ are independent.

Show that the stability under finite intersections is needed: try \mathbb{P} as the uniform distribution on $\Omega = \{1, 2, 3, 4\}$ and $\mathcal{E}_1 = \{\Omega, \{1, 2\}\}$ and $\mathcal{E}_2 = \{\Omega, \{2, 3\}, \{2, 4\}\}$.

- *[3] Let A_1, A_2, \ldots be events in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define $X_n = A_1 + \cdots + A_n$ and $\sigma_n = \mathbb{P}X_n$.
 - (i) Show that $||X_n/\sigma_n||_2 \ge 1$. Hint: Jensen.

Remark. If Y is a real-valued random variable for which $\mathbb{P}|Y|^2 < \infty$, its \mathcal{L}^2 norm is defined as $||Y||_2 := (\mathbb{P}|Y|^2)^{1/2}$. Compare with HW3.2 for $\Psi(x) = x^2$ or UGMTP Problem 2.17.)

(ii) Show that (as a pointwise inequality between random variables)

$$\{X_n = 0\} \le \frac{(k - X_n)(k + 1 - X_n)}{k(k + 1)}$$

for each positive integer k. Hint: Are there any values of X_n for which the ratio on the right-hand side is negative?

Now suppose $\sigma_n \to \infty$ and $||X_n/\sigma_n||_2 \to 1$.

- (iii) By making an appropriate choice of the integer k (depending on n) in (ii), show that $\mathbb{P}\{X_n = 0\} \to 0$ as $n \to \infty$. Deduce that $\sum_{i=1}^{\infty} A_i \ge 1$ almost surely.
- (iv) Prove that $\sum_{i=m}^{\infty} A_i \ge 1$ almost surely, for each fixed *m*. Hint: Show that the two convergence assumptions also hold for the sequence A_m, A_{m+1}, \ldots
- (v) Deduce that $\mathbb{P}\{\omega \in A_i \text{ i. o. }\} = 1$.
- (vi) If $\{B_i\}$ is a sequence of independent events for which $\sum_i \mathbb{P}B_i = \infty$, show that $\mathbb{P}\{\omega \in B_i \text{ i. o. }\} = 1$. Please use (v). I am not interested in seeing the standard textbook proof for the harder direction of Borel-Cantelli.

PTO

[4] Let $(\mathfrak{X}, \mathcal{A}, \mu)$ and $(\mathfrak{Y}, \mathfrak{B}, \nu)$ be two measure spaces, with both μ and ν sigmafinite. Write \mathfrak{G} for the set of all functions expressible as finite linear combinations of measurable rectangles. That is, a typical g in \mathfrak{G} is expressible as a finite sum $\sum_{i=1}^{k} \alpha_i \{ x \in A_i, y \in B_i \}$ for some sets $A_i \in \mathcal{A}$ and $B_i \in \mathfrak{B}$ and real numbers α_i , for i = 1, 2, ..., k.

Show that for each f in $\mathcal{L}^1(\mathcal{X} \times \mathcal{Y}, \mathcal{A} \otimes \mathcal{B}, \mu \otimes \nu)$ and each $\epsilon > 0$ there exist a $g \in \mathcal{G}$ such that $\mu \otimes \nu |f - g| < \epsilon$. Follow these steps.

- (i) First suppose that both μ and ν are finite measures and |f| is bounded. Use a lambda-space argument to establish the asserted approximation property.
- (ii) Extend to the sigma-finite case. Hint: First approximate the function f by some $f_n := (-n) \lor (f \land n)$.