Statistics 330b/600b, Math 330b spring 2013 Homework # 6 Due: Thursday 28 February

Please attempt at least the starred problems.

*[1] Suppose T is a function from a set \mathfrak{X} into a set \mathfrak{Y} , which is equipped with a σ -field \mathfrak{B} . Recall that $\sigma(T) := \{T^{-1}B : B \in \mathfrak{B}\}$ is the smallest sigma-field on \mathfrak{X} for which T is $\sigma(T) \setminus \mathfrak{B}$ -measurable.

Show that to each f in $\mathcal{M}^+(\mathfrak{X}, \sigma(T))$ there exists a g in $\mathcal{M}^+(\mathfrak{Y}, \mathcal{B})$ such that $f = g \circ T$ (that is, f(x) = g(T(x)), for all x in \mathfrak{X}) by following these steps.

- (i) If f is the indicator function of $T^{-1}(B)$ and g is the indicator function of B, show that $f = g \circ T$.
- (ii) Consider the case where $f \in \mathcal{M}^+_{\text{simple}}(\mathcal{X}, \sigma(T))$.
- (iii) Suppose $f_n = g_n \circ T$ is a sequence in $\mathcal{M}^+_{\text{simple}}(\mathfrak{X}, \sigma(T))$ that increases pointwise to f. Define $g(y) = \limsup g_n(y)$ for each $y \text{ in } \mathcal{Y}$. Show that g has the desired property.
- (iv) In part (iii), why can't we assume that $\lim g_n(y)$ exists for each y in \mathcal{Y} ?
- *[2] Suppose X is a random variable taking values in $[0, \infty)$ for which $\mathbb{P}X = \mu < \infty$. Let X_1, X_2, \ldots be independent random variables, each with the same distribution as X. Define $Y_i := X_i \{X_i \leq i\}$ and $\mu_i := \mathbb{P}Y_i$. Let $S_n := \sum_{i \leq n} X_i$ and $T_n := \sum_{i \leq n} Y_i$. For a fixed $\rho > 1$, let $\{k_n\}$ be an increasing sequence of positive integers such that $k_n/\rho^n \to 1$.
 - (i) Show that there exists a finite constant C for which $\sum_{j \in \mathbb{N}} \{i \leq k_j\}/k_j^2 \leq C/i^2$ for each positive integer i and $\sum_{i>\ell} i^{-2} \leq C/\ell$ for each positive integer ℓ .
 - (ii) Show that $\sum_{i \le n} \{X > i\} \le n \land X$. Deduce that

$$0 \leq \mu - \mathbb{P}T_n/n = \mathbb{P}\sum\nolimits_{i \leq n} X\{X > i\}/n \to 0 \qquad \text{as } n \to \infty.$$

- (iii) Show that $\sum_{i \in \mathbb{N}} \mathbb{P}\{X_i \neq Y_i\} \leq \sum_{i \in \mathbb{N}} \mathbb{P}\{X > i\} < \infty$. Deduce that $(S_n T_n)/n \to 0$ almost surely. Hint: $n^{-1} \sum_{i \leq I} |X_i(\omega) Y_i(\omega)| \to 0$ as $n \to \infty$, for each fixed I.
- (iv) Show that $\operatorname{var}(T_n) \leq \sum_{i \leq n} \mathbb{P}X^2 \{ X \leq i \}.$
- (v) Use parts (i) and (iv) to show that

$$\sum_{j\in\mathbb{N}} \mathbb{P}\{|T_{k_j} - \mathbb{P}T_{k_j}| > \epsilon k_j\} \le \sum_{j\in\mathbb{N}} \sum_{i\in\mathbb{N}} \frac{\{i \le k_j\} \mathbb{P}X^2 \{X \le i\}}{\epsilon^2 k_j^2}$$
$$\le C\epsilon^{-2} \sum_{i\in\mathbb{N}} \mathbb{P}X^2 \{X \le i\}/i^2 < \infty.$$

Deduce that $(T_{k_j} - \mathbb{P}T_{k_j})/k_j \to 0$ almost surely as $j \to \infty$.

- (vi) Deduce that $S_{k_j}/k_j \to \mu$ almost surely as $j \to \infty$.
- (vii) For each $\rho' > \rho$, show that

$$\frac{S_{k_n}}{\rho'k_n} \le \frac{S_m}{m} \le \rho' \frac{S_{k_{n+1}}}{k_{n+1}} \quad \text{for } k_n \le m \le k_{n+1},$$

when n is large enough.

- (viii) Deduce that $\limsup S_m/m$ and $\liminf S_m/m$ both lie between μ/ρ' and $\mu\rho'$, with probability one.
- (ix) Cast out a sequence of negligible sets as ρ decreases to 1 to deduce that $S_m/m \to \mu$ almost surely.
- (x) Why does the SLLN for i.i.d. integrable random variables follow from the preceding argument?