Statistics 330b/600b, Math 330b spring 2013 Homework # 7 Due: Thursday 7 March

Please attempt at least the starred problems.

*[1] Suppose W and Z are nonnegative random variables with $||Z||_p < \infty$ for some p > 1. Suppose also that there exists positive constants β and C for which

 $t\mathbb{P}\{W > \beta t\} \le C\mathbb{P}Z\{W > t\} \qquad \text{for all } t > 0.$

Show that $||W||_p \leq Cp\beta^p ||Z||_p / (p-1)$. To make things slightly easier, I will let you assume that $||W||_p < \infty$. For a truly virtuoso effort, you might also show that the finiteness of $||W||_p$ actually follows from the finiteness of $||Z||_p$.

- [2] Suppose $\{(S_i, \mathcal{F}_i) : i = 1, 2, ..., N\}$ is a nonnegative submartingale. For some fixed p > 1 suppose $\mathbb{P}S_i^p < \infty$ for each i. Let q > 1 be defined by $p^{-1} + q^{-1} = 1$. Show that $\mathbb{P}(\max_{i \le n} S_i^p) \le q^p \mathbb{P}S_n^p$, by following these steps.
 - (i) Write M_n for $\max_{i < n} S_i$. For each fixed x > 0 show that

$$x\mathbb{P}\{M_n \ge x\} \le \mathbb{P}S_n\{M_n \ge x\}.$$

(ii) Invoke Problem [1].

*[3] Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. For each $n \in \mathbb{N}$ suppose \mathcal{E}_n consists of finitely many disjoints sets from \mathcal{F} that provide a partition of Ω , such that each E in \mathcal{E}_n can be written as a disjoint union of sets from \mathcal{E}_{n+1} . (The partitions are nested.) For each $A \in \mathcal{F}$ and each $Y \in \mathcal{L}^1 = \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ define

$$\mathbb{P}_A Y = \begin{cases} \mathbb{P}(YA) / \mathbb{P}A & \text{if } \mathbb{P}A > 0\\ 0 & \text{otherwise} \end{cases}$$

Define $\mathfrak{F}_n := \sigma(\mathcal{E}_n)$. Define maps τ_n from $\mathcal{L}^1(\Omega, \mathfrak{F}, \mathbb{P})$ into $\mathcal{L}^1(\Omega, \mathfrak{F}_n, \mathbb{P}\Big|_{\mathfrak{F}})$ by

$$(\tau_n Y)(\omega) = \sum_{E \in \mathcal{E}_n} \{\omega \in E\} \mathbb{P}_E Y.$$

Now consider a fixed nonnegative X in \mathcal{L}^1 . Define $X_n = \tau_n(X)$.

- (i) Show that $\{(X_n, \mathcal{F}_n) : n \in \mathbb{N}\}$ is a nonnegative martingale, which converges almost surely to some nonnegative, integrable random variable X_{∞} . Hint: Why is it enough to check that $\mathbb{P}X_n E = \mathbb{P}X_{n+1}E$ for each $E \in \mathcal{E}_n$?
- (ii) Use Fatou's Lemma (UGMTP page 31) to deduce that $\mathbb{P}X \geq \mathbb{P}X_{\infty}$.
- (iii) For each finite, nonnegative constant M show that there exists a nonnegative random variable $X_{\infty,M}$ for which $\mathbb{P}[\tau_n(X \wedge M) - X_{\infty,M}] \to 0$ as $n \to \infty$.
- (iv) Show that $X_{\infty} \geq X_{\infty,M}$ almost surely for each M. Deduce that $\mathbb{P}X_{\infty} = \mathbb{P}X$.
- (v) Show that $\mathbb{P}|X_n X_\infty| \to 0$. Hint: Show that $\mathbb{P}(X_\infty X_n)^+ \to 0$ as $n \to \infty$ and $\mathbb{P}(X_\infty X_n)^+ = \mathbb{P}(X_\infty X_n)^-$.
- (vi) Define $\mathcal{E} = \bigcup_{n \in \mathbb{N}} \mathcal{E}_n$ and $\mathcal{F}_{\infty} = \sigma(\mathcal{E})$. Show that X_{∞} is \mathcal{F}_{∞} -measurable and $\mathbb{P}XE = \mathbb{P}X_{\infty}E$ for all $E \in \mathcal{E}$. Deduce that $\mathbb{P}X_{\infty}F = \mathbb{P}XF$ for all $F \in \mathcal{F}_{\infty}$.

The random variable X_n is usually called the conditional expectation of the random variable X given the sub-sigma-field \mathfrak{F}_n and X_∞ is called its conditional expectation given \mathfrak{F}_∞ .