Statistics 330b/600b, Math 330b spring 2013 Homework # 8 Due: Thursday 4 April

Please attempt at least the starred problems.

- *[1] Suppose ν and μ are finite measures defined on a sigma-field \mathcal{A} of subsets of a set \mathfrak{X} . In class I showed that, if $\nu f \leq \mu f$ for each $f \in \mathfrak{M}^+(\mathfrak{X}, \mathcal{A})$ then there exists an \mathcal{A} -measurable function Δ for which $0 \leq \Delta \leq 1$ and $\nu f = \mu(f\Delta)$ for all f in $\mathfrak{M}^+(\mathfrak{X}, \mathcal{A})$.
 - (i) Extend this result to the case where ν and μ are still finite measures but $\nu \ll \mu$. Hint: Define $\lambda = \nu + \mu$ then invoke the result from class to show that there is an \mathcal{A} -measurable function Δ_0 for which $0 \leq \Delta_0 \leq 1$ and $\nu f = \mu(f\Delta_0)$ for all fin $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$. Then show that $\mu\Delta_0\{\Delta_0 \geq 1\} = 0$. Finally explain why $\nu f = \mu(f\Delta)$ for all $f \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$, where

$$\Delta := \frac{\Delta_0}{1 - \Delta_0} \{ \Delta_0 < 1 \}$$

Beware of $\infty - \infty$.

- (ii) Show that the Δ from part (ii) is unique up to μ -equivalence.
- (iii) Extend the theorem to the case where $\nu = \sum_{i \in \mathbb{N}} \nu_i$, a sum of finite measures for which $\nu_i \ll \mu$ for each *i*.
- [2] Suppose ν and μ are measures on $(\mathfrak{X}, \mathcal{A})$ for which $\nu A = 0$ for every $A \in \mathcal{A}$ such that $\mu A = 0$. Show that $\nu f = 0$ for every $f \in \mathcal{M}^+(\mathfrak{X}, \mathcal{A})$ for which $\mu f = 0$.
- *[3] Let \mathcal{K} be a closed, convex subset of $\mathcal{H} := \mathcal{L}^2(\mathcal{X}, \mathcal{A}, \mu)$. Show that to each f in \mathcal{H} there is an f_0 (unique up to μ -equivalence) in \mathcal{K} for which

$$<1> \qquad ||f - f_0||_2 = \delta := \inf\{||f - h||_2 : h \in \mathcal{K}\}\$$

and

 $<\!\!2\!\!>$

$$\mathcal{K} \subseteq \{h \in \mathcal{H} : \langle h - f_0, f_0 - f \rangle \ge 0\}$$

by the following steps.

(i) For all $a, b \in \mathcal{H}$ show that

 $||a + b||_{2}^{2} + ||a - b||_{2}^{2} = 2 ||a||_{2}^{2} + 2 ||b||_{2}^{2}.$

- (ii) If $h_n \in \mathcal{K}$ are chosen to make $\delta_n := \|f h_n\|_2 \to \delta$, show that $\{h_n : n \in \mathbb{N}\}$ is a Cauchy sequence in \mathcal{H} . Assuming completeness of \mathcal{H} , deduce that there exists some f_0 in \mathcal{K} for which $\|h_n - f_0\|_2 \to 0$. Explain why f_0 satisfies <1>.
- (iii) For all $h \in \mathcal{K}$ and all $t \in [0, 1]$ explain why $||f (1 t)f_0 th||_2 \ge \delta$. Deduce <2>.