Statistics 330b/600b, Math 330b spring 2013 Homework # 9 Due: Thursday 11 April

Please attempt at least the starred problems.

*[1] (Neyman factorization theorem cf. UGMTP Example 5.31) Suppose \mathbb{P} and \mathbb{P}_{θ} , for $\theta \in \Theta$, are probability measures defined on a sigma-field \mathcal{F} , for some index set Θ . Suppose also that \mathcal{G} is a sub-sigma-field of \mathcal{F} and that there exist versions of densities

$$\frac{d\mathbb{P}_{\theta}}{d\mathbb{P}} = g_{\theta}(\omega)h(\omega) \qquad \text{with } g_{\theta} \in \mathcal{M}^{+}(\Omega, \mathfrak{G}) \text{ for each } \theta$$

for a fixed $h \in \mathcal{M}^+(\Omega, \mathcal{F})$ that doesn't depend on θ . Define H to be a version of $\mathbb{P}_{\mathcal{G}}h$. [That is, choose one H from the \mathbb{P} -equivalence class of possibilities.]

- (i) Show that $\mathbb{P}_{\theta}\{H \in B\} = \mathbb{P}_{g_{\theta}}(\omega)\{H \in B\}H$ for each θ and each $B \in \mathcal{B}(\mathbb{R})$.
- (ii) Deduce that $\mathbb{P}_{\theta}\{H=0\}=0=\mathbb{P}_{\theta}\{H=\infty\}$ for each θ .
- (iii) For each X in $\mathcal{M}^+(\Omega, \mathcal{F})$ and some fixed choice of $\mathbb{P}_{\mathcal{G}}(Xh)$ define

$$Y(\omega) = \frac{\mathbb{P}_{\mathcal{G}}(Xh)}{H} \{ 0 < H < \infty \}.$$

Show that $\mathbb{P}_{\theta}(X \mid \mathcal{G}) = Y$ a.e. $[\mathbb{P}_{\theta}]$ for every θ .

- [2] Suppose g_1 and g_2 are maps from $(\mathfrak{X}, \mathcal{A})$ to $(\mathfrak{Y}, \mathcal{B})$, with product-measurable graphs. Define $\psi_i(x) = (x, g_i(x))$, a measurable map from \mathfrak{X} into $\mathfrak{X} \times \mathfrak{Y}$. Let $P_i = \psi_i(\mu_i)$, for probability measures μ_i on \mathcal{A} . Let $P = \alpha_1 P_1 + \alpha_2 P_2$, for constants $\alpha_i > 0$ with $\alpha_1 + \alpha_2 = 1$. Let X denote the coordinate map from $\mathfrak{X} \times \mathfrak{Y}$ onto the \mathfrak{X} space. Show that the conditional probability distribution $P_x = P(\cdot | X = x)$ concentrates on the points $(x, g_1(x))$ and $(x, g_2(x))$. Find the conditional probabilities assigned to each point. Hint: Consider the density of μ_i with respect to $\alpha_1\mu_1 + \alpha_2\mu_2$.
- [3] Suppose $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G} is a sub- σ -field of \mathcal{F} containing all \mathbb{P} -negligible sets. Show that X is \mathcal{G} -measurable if and only if $\mathbb{P}(XW) = 0$ for every bounded random variable W with $\mathbb{P}_{\mathcal{G}}W = 0$ almost surely by the following steps.

Remark. Compare with the corresponding statement for random variables that are square integrable: $Z \in \mathcal{L}^2(\mathcal{G})$ if and only if it is orthogonal to every square integrable W that is orthogonal to $\mathcal{L}^2(\mathcal{G})$.

- (i) Suppose t is a real number t for which $\mathbb{P}\{X = t\} = 0$. Define $Z_t = \mathbb{P}_{\mathcal{G}}\{X > t\}$ and $W_t = \{X > t\} Z_t$. Show that $(X t)W_t \ge 0$ almost surely.
- (ii) Explain why $\mathbb{P}((X-t)W_t) = 0$. Deduce that $(X-t)W_t = 0$ almost surely.
- (iii) Deduce that $\{X > t\} \in \mathcal{G}$ for every t with $\mathbb{P}\{X = t\} = 0$. Conclude that X is \mathcal{G} -measurable.