Statistics 330b/600b, Math 330b spring 2014

Homework # 1 Due: Thursday 23 January

Please attempt at least the starred problems.

*[1] Suppose T maps a set \mathfrak{X} into a set \mathfrak{Y} . For each $B \subseteq \mathfrak{Y}$ and $A \subseteq \mathfrak{X}$ define $T^{-1}B := \{x \in \mathfrak{X} : T(x) \in B\}$. and $T(A) := \{T(x) : x \in A\}$. Some of the following eight assertions are true in general and some are false.

(i)
$$T\left(\cup_{i} A_{i}\right) = \cup_{i} T(A_{i})$$

(ii) $T^{-1}\left(\cup_{i} B_{i}\right) = \cup_{i} T^{-1}(B_{i})$
(iii) $T\left(\cap_{i} A_{i}\right) = \cap_{i} T(A_{i})$
(iv) $T^{-1}\left(\cap_{i} B_{i}\right) = \cap_{i} T^{-1}(B_{i})$
(v) $T\left(A^{c}\right) = \left(T\left(A\right)\right)^{c}$
(vi) $T^{-1}\left(B^{c}\right) = \left(T^{-1}\left(B\right)\right)^{c}$
(vii) $T^{-1}\left(T(A)\right) = A$
(viii) $T\left(T^{-1}(B)\right) = B$

Provide counterexamples for each of the false assertions. You might find it helpful to contemplate the picture for a special case.

- *[2] Suppose x and y are two points in a set \mathfrak{X} and \mathcal{E} is a set of subsets of \mathfrak{X} with the property that $\mathbf{1}_E\{x\} = \mathbf{1}_E\{y\}$ for all $E \in \mathcal{E}$. Show that $\mathbf{1}_B\{x\} = \mathbf{1}_B\{y\}$ for all $B \in \sigma(\mathcal{E})$. Hint: Show that $\mathfrak{B}_0 = \{B \in \sigma(\mathcal{E}) : \mathbf{1}_B\{x\} = \mathbf{1}_B\{y\}\}$ is a sigma-field.
- *[3] Let \mathcal{G} denote the set of all open subsets of \mathbb{R}^2 and \mathcal{T} denote the set of all closed triangles in \mathbb{R}^2 . Show that $\sigma(\mathcal{G}) = \sigma(\mathcal{T})$.
- [4] Let A_1, \ldots, A_N be events in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. For each subset J of $\{1, 2, \ldots, N\}$ write A_J for $\bigcap_{i \in J} A_i$. Define $S_k := \sum_{|J|=k} \mathbb{P}A_J$, where |J| denotes the number of indices in J.

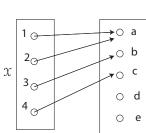
$$\mathbb{P}\{\text{exactly } m \text{ of the } A_i\text{'s occur}\} = \binom{m}{m}S_m - \binom{m+1}{m}S_{m+1} + \dots \pm \binom{N}{m}S_N$$

Hint: Write $\mathbf{1}_i(\omega)$ for the indicator function of the set A_i and $\mathbf{1}_J(\omega)$ for the indicator function of A_J . For a dummy variable z, show that

$$\prod_{i=1}^{N} (1 - \mathbf{1}_{i}(\omega) + z\mathbf{1}_{i}(\omega)) = \sum_{k=0}^{n} (z - 1)^{k} \sum_{|J|=k} \mathbf{1}_{J}(\omega) \quad \text{for every } \omega \in \Omega.$$

Expand the left-hand side, take expectations, then interpret the coefficient of z^m .

[5] Write \mathfrak{X} for $[0, +\infty]$. Construct a metric on \mathfrak{X} that corresponds to the usual notion of convergence (What is that?) for which the corresponding Borel sigma-field $\mathfrak{B}(\mathfrak{X})$ consists of all sets of the form $B \cap \mathfrak{X}$ or $(B \cap \mathfrak{X}) \cup \{+\infty\}$, with $B \in \mathfrak{B}(\mathbb{R})$. (Explanations needed.) Hint: Consider $\psi(|x - y|)$ where ψ is a concave, increasing function from $[0, \infty]$ onto [0, 1].



y