Statistics 330b/600b, Math 330b spring 2014

Homework # 10 Due: Thursday 10 April

*[1] Suppose $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and $\{\mathcal{F}_n : n \in \mathbb{N}_0\}$ is a filtration: $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}$. Define $\mathcal{E} = \bigcup_{n \in \mathbb{N}_0} \mathcal{F}_n$ and $\mathcal{F}_{\infty} = \sigma(\mathcal{E})$.

For each n in $\overline{\mathbb{N}}_0 = \mathbb{N}_0 \cup \{\infty\}$ define $X_n = \mathbb{P}_{\mathcal{F}_n} X$. In class I (almost) showed that $\{(X_n, \mathcal{F}_n) : n \in \overline{\mathbb{N}}_0\}$ is a martingale. I then deduced (via the positive supermartingale convergence theorem) that $\{X_n : n \in \mathbb{N}_0\}$ converges almost surely to the \mathcal{F}_∞ -measurable random variable $Z = \liminf_{\mathbb{N}_0} X_n$. [Be careful here: X_∞ is not involved in the liminf, which is $\lim_{n \in \mathbb{N}_0} \inf_{n \leq i < \infty} X_i$.]

Without loss of generality assume $X \ge 0$. Show that $\{\mathbb{P}|X_n - Z| : n \in \mathbb{N}_0\}$ converges to zero and $Z = X_{\infty}$ almost surely by the following steps.

- (i) Show $\mathbb{P}X \ge \mathbb{P}Z$.
- (ii) For each $c \in \mathbb{R}^+$ and $n \in \mathbb{N}_0$ define $X_n(c) = \mathbb{P}_{\mathcal{F}_n}(X \wedge c)$. Show that there exists a nonnegative, \mathcal{F}_{∞} -measurable random variable Z(c) for which $\{X_n : n \in \mathbb{N}_0\}$ converges to Z(c) almost surely and in \mathcal{L}^1 norm. Deduce that

 $\mathbb{P}Z \ge \sup_c \mathbb{P}\left(X \wedge c\right) = \mathbb{P}X.$

- (iii) Show that $\mathbb{P}|X_n Z| = 2\mathbb{P}(Z X_n)^+ \to 0.$
- (iv) Show that $\mathbb{P}XE = \mathbb{P}ZE$ for all E in \mathcal{E} . Then complete the proof that $Z = X_{\infty}$ almost surely.
- *[2] Suppose $X_n \to X$ almost surely, with $|X_n| \leq H$ for an H in $\mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$. Let \mathcal{A} be a sub-sigma-field of \mathcal{F} . Using only the properties for conditional expectations dereived in class, show that $\mathbb{P}_{\mathcal{A}} X_n \to \mathbb{P}_{\mathcal{A}} X$ almost surely.
- *[3] Suppose $\{X_n\}$ is a sequence in $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ that converges in \mathcal{L}^2 to some random variable X. Let \mathcal{A} be a sub-sigma-field of \mathcal{F} . Show that $\mathbb{P}_{\mathcal{A}}X_n$ converges in \mathcal{L}^2 to $\mathbb{P}_{\mathcal{A}}X$.
- [4] Suppose $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and $T : (\Omega, \mathcal{F}) \to (\mathcal{T}, \mathcal{B})$ where \mathcal{T} is a separable metric space equipped with its Borel sigma-field. Define $\mathbb{Q} = T\mathbb{P}$. Abbreviate $\mathcal{M}^+(\Omega, \mathcal{F})$ to $\mathcal{M}^+(\mathcal{F})$, and so on.

Suppose $\Lambda = \{\lambda_t : t \in \mathcal{T}\}$ is a set of probability measures on \mathcal{F} for which $t \mapsto \lambda_t f$ is \mathcal{B} -measurable for each f in $\mathcal{M}^+(\mathcal{F})$. Suppose also that

$$\mathbb{P}g(T\omega)f(\omega) = \mathbb{Q}^t g(t)\lambda_t^{\omega} f(\omega) \quad \text{for all } g \in \mathcal{M}^+(\mathcal{B}) \text{ and } f \in \mathcal{M}^+(\mathcal{F}).$$

- (i) Use a generating class argument to show that $\mathbb{P}h(\omega, T\omega) = \mathbb{Q}^t \lambda_t^{\omega} h(\omega, t)$ for all $h \in \mathcal{M}^+(\mathcal{F} \otimes \mathcal{B}).$
- (ii) Show that the function $h(\omega, t) = \{t \neq T\omega\}$ is $\mathcal{F} \otimes \mathcal{B}$ -measurable.
- (iii) Deduce that $\lambda_t \{ \omega : t \neq T \omega \} = 0$ for \mathbb{Q} almost all t.
- [5] Suppose $X_0 \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$. Suppose also that \mathcal{A}_1 and \mathcal{A}_2 are sub- σ -fields of \mathcal{F} . Define $\mathcal{A} = \mathcal{A}_1 \cap \mathcal{A}_2$. (Do not assume that \mathcal{A} is equal to an \mathcal{A}_i . That is, the \mathcal{A}_i 's are not nested.) Define sequences of \mathcal{A}_1 -measurable random variables $\{Y_n : n \in \mathbb{N}_0\}$ and \mathcal{A}_2 -measurable random variables $\{X_n : n \in \mathbb{N}\}$ recursively, by $Y_n = \mathbb{P}_{\mathcal{A}_1} X_n$ and $X_{n+1} = \mathbb{P}_{\mathcal{A}_2} Y_n$. Suppose there exists a Z in $\mathcal{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ for which $\mathbb{P}|X_n - Z|^2 \to 0$. Show that $Z = \mathbb{P}_{\mathcal{A}} X_0$ almost surely. [I would also like to know when the X_n 's converge in \mathcal{L}^2 , but that seems a bit hard without using some sort of compactness property. Compare with Breiman and Friedman 1985.]

References

Breiman, L. and J. H. Friedman (1985). Estimating optimal transformations for multiple regression and correlation. *Journal of the American Statistical Association 80*(391), 580–598.