Statistics 330b/600b, Math 330b spring 2014

Homework # 11 Due: Thursday 24 April

- *[1] Suppose g_1 and g_2 are $\mathcal{A}\setminus\mathcal{B}$ -measurable maps from $(\mathfrak{X}, \mathcal{A})$ to $(\mathfrak{Y}, \mathcal{B})$, with productmeasurable graphs. Define $\psi_i(x) = (x, g_i(x))$, a measurable map from \mathfrak{X} into $\mathfrak{X} \times \mathfrak{Y}$. Let $P_i = \psi_i(\mu_i)$, for probability measures μ_i on \mathcal{A} . Let $P = \alpha_1 P_1 + \alpha_2 P_2$, for constants $\alpha_i > 0$ with $\alpha_1 + \alpha_2 = 1$. Let X denote the coordinate map from $\mathfrak{X} \times \mathfrak{Y}$ onto the \mathfrak{X} space and Q denote the distribution of X under P.
 - (i) For $f \in \mathcal{M}^+(\mathfrak{X} \times \mathfrak{Y}, \mathcal{A} \otimes \mathfrak{B})$ find an expression for Pf in terms of μ_1, μ_2, g_1 , and g_2 .
 - (ii) Find an expression for Q in terms of μ_1 and μ_2 .
 - (iii) Show that the set $\{x : g_1(x) \neq g_2(x)\}$ is \mathcal{A} -measurable if \mathcal{Y} is a separable metric space and \mathcal{B} is its Borel sigma-field,
 - (iv) Suppose the conditional probability distribution $P_x = P(\cdot | X = x)$ puts mass $\beta_i(x)$ at $(x, g_i(x))$, for i = 1, 2. Show that, on the set $\{g_1 \neq g_2\}$, the functions β_i are almost surely uniquely determined as Radon-Nikodym derivatives.
 - (v) Consider the special case where: $\mathfrak{X} = \mathfrak{Y} = \mathbb{R}$ and $\mathcal{A} = \mathcal{B} = \mathcal{B}(\mathbb{R})$; the measure μ_i is the $N(\theta_i, \sigma_i^2)$; and $g_i(x) = a_i + b_i x$ for constants a_i and b_i . Find the conditional distribution $P(\cdot | X = x)$.
- *[2] Suppose \mathfrak{X} is a set equipped with a metric d. Show that $\operatorname{BL}(\mathfrak{X})$ is a vector space that is stable under pairwise products and pairwise maxima. [For maxima, it is easier to first show that $g^+ \in \operatorname{BL}(\mathfrak{X})$ if $g \in \operatorname{BL}(\mathfrak{X})$.]
- *[3] Suppose X_n has a $N(\mu_n, \sigma_n^2)$ distribution, and $X_n \rightsquigarrow P$, for some probability measure P on $\mathcal{B}(\mathbb{R})$.
 - (i) Explain why there exists a finite constant M such that $\liminf \mathbb{P}\{|X_n| \leq M\} > 3/4$.
 - (ii) Explain why we must have $|\mu_n| \leq M$ and $\sigma_n \leq 8M/(3\sqrt{2\pi})$ eventually.
 - (iii) Show that $\mu := \lim \mu_n$ and $\sigma^2 := \lim \sigma_n^2$ must exist as finite limits and that P must be the $N(\mu, \sigma^2)$ distribution.
 - (iv) Extend the result to sequences of random vectors.
- [4] Let $\{X_{n,i}\}$ be a triangular array of random variables, independent within each row and satisfying
 - (a) $\max_i |X_{n,i}| \to 0$ in probability,
 - (b) $\sum_{i} \mathbb{P}X_{n,i}\{|X_{n,i}| \leq \epsilon\} \to \mu$ for each $\epsilon > 0$,
 - (c) $\sum_{i} \operatorname{var}(X_{n,i}\{|X_{n,i}| \le \epsilon\}) \to \sigma^2 < \infty$ for each $\epsilon > 0$.
 - (i) Show that there exists a sequence of positive numbers $\{\epsilon_n\}$ that tends to zero slowly enough that
 - (d) $\mathbb{P}\{\max_i |X_{n,i}| > \epsilon_n\} \to 0$,
 - (e) $\sum_{i} \mathbb{P}X_{n,i}\{|X_{n,i}| \le \epsilon_n\} \to \mu,$

(f)
$$\sum_{i} \operatorname{var} \left(X_{n,i} \{ |X_{n,i}| \le \epsilon_n \} \right) \to \sigma^2$$

- (ii) Deduce that $\sum_{i} X_{n,i} \rightsquigarrow N(\mu, \sigma^2)$. Hint: Consider $\eta_{n,i} := X_{n,i} \{ |X_{n,i}| \le \epsilon_n \}$ and $\xi_{n,i} := \eta_{n,i} \mathbb{P}\eta_{n,i}$.
- [5] For each *i* in some (possibly uncountably infinite) index set \mathcal{I} , suppose $h_i : \mathcal{X} \to \mathcal{Y}_i$. Suppose each \mathcal{Y}_i is equipped with a sigma-field \mathcal{B}_i . Equip the product space $\mathcal{Y} = \prod_{i \in \mathcal{I}} \mathcal{Y}_i$ with its product sigma-field \mathcal{B} , which is the sigma-field generated by the collection \mathcal{E} of all product sets of the form $\prod_{i \in \mathcal{I}} B_i$ with $B_i \in \mathcal{B}_i$ for all *i* and $B_i = \mathcal{Y}_i$ for all except finitely many *i*.
 - (i) Show that there is a smallest sigma-field \mathcal{A} on \mathfrak{X} that makes h_i an $\mathcal{A} \setminus \mathcal{B}_i$ -measurable function for every i.
 - (ii) For each f in $\mathcal{M}^+(\mathfrak{X}, \mathcal{A})$ show that there exists a g in $\mathcal{M}^+(\mathfrak{Y}, \mathcal{B})$ for which $f = g \circ H$, where $H : \mathfrak{X} \to \mathfrak{Y}$ is defined as the map for which $H(x)_i = h_i(x)$.