Statistics 330b/600b, Math 330b spring 2014

Homework # 2 Due: Thursday 30 January

Please attempt at least the starred problems.

Throughout this sheet, \mathcal{A} is a sigma-field on some set \mathfrak{X} and μ is a measure on \mathcal{A} and $\mathcal{N}_{\mu} = \{N \in \mathcal{A} : \mu N = 0\}.$

*[1] Suppose $f_1, \ldots, f_k \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$ and $\theta_1, \ldots, \theta_k$ are strictly positive numbers that sum to one. Let μ be a measure on \mathcal{A} . Show that

$$\mu \prod_{i \le k} f_i^{\theta_i} \le \prod_{i \le k} (\mu f_i)^{\theta_i}$$

by following these steps.

- (i) Explain why the inequality is trivially true if $\mu f_i = 0$ for at least one *i* or if $\mu f_i = \infty$ for at least one *i* (and all the other μf_j are strictly positive).
- (ii) Explain why there is no loss of generality in assuming that $\mu f_i = 1$ for each i and $f_i(x) < \infty$ for each x and i.
- (iii) For all $a_1, \ldots, a_k \in \mathbb{R}^+$, show that $\prod_{i \leq k} a_i^{\theta_i} \leq \sum_{i \leq k} \theta_i a_i$. Hint: First dispose of the trivial case where at least one a_i is zero, then rewrite the inequality using $b_i = \log a_i$. You do not need to reprove that the log function is concave on $(0, \infty)$.
- (iv) Complete the proof by considering the inequality from (iii) with $a_i = f_i(x)$.

Remark. Textbooks often contain the the special case where k = 2 and $\theta_1 = 1/p$ and $\theta_2 = 1/q$ and $f_1 = |g_1|^p$ and $f_2 = |g_2|^q$, with the assertion that $|\mu(g_1g_2)| \le \mu |g_1g_2| \le (\mu |g_1|^p)^{1/p} (\mu |g_2|^q)^{1/q}$.

- *[2] For f in $\mathcal{L}^{1}(\mu)$ define $||f||_{1} = \mu|f|$. Let $\{f_{n}\}$ be a Cauchy sequence in $\mathcal{L}^{1}(\mu)$, that is, $||f_{n} - f_{m}||_{1} \to 0$ as $\min(m, n) \to \infty$. Show that there exists an f in $\mathcal{L}^{1}(\mu)$ for which $||f_{n} - f||_{1} \to 0$, by following these steps. Note: Don't confuse Cauchy sequences (in \mathcal{L}^{1} distance) of functions with Cauchy sequences of real numbers.
 - (i) For each $k \in \mathbb{N}$ there exists an $n(k) \in \mathbb{N}$ for which: $||f_n f_m||_1 < 2^{-k}$ when $\min(m, n) \ge n(k)$. Without loss of generality assume that n(k) is strictly increasing with k. Define $H(x) := \sum_{k=1}^{\infty} |f_{n(k)}(x) f_{n(k+1)}(x)|$. Show that $\mu H < \infty$.
 - (ii) Show that there exists a real-valued, measurable function f for which

 $H \ge |f_{n(k)}(x) - f(x)| \to 0$ as $k \to \infty$, for each x with $H(x) < \infty$.

Hint: \mathbb{R} is complete. Be careful how you define f(x) when $H(x) = \infty$.

- (iii) Deduce that $\|f_{n(k)} f\|_1 \to 0$ as $k \to \infty$.
- (iv) Show that f belongs to $\mathcal{L}^1(\mu)$ and $\|f_n f\|_1 \to 0$ as $n \to \infty$.
- [3] Suppose $\{f_n : n \in \mathbb{N}\} \subset \mathcal{L}^1(\mathfrak{X}, \mathcal{A}, \mu)$ and $\sup_n |f_n(x)| \leq F(x)$ for each x, for some $F \in \mathcal{L}^1(\mathfrak{X}, \mathcal{A}, \mu)$. Suppose also that $\lim_n \mu\{x : |f_n(x)| > \epsilon F(x)\} = 0$ for each $\epsilon > 0$. Show that $\mu |f_n| \to 0$. Hint: If g is a real function for which $\sup_x |g(x)| \leq 1$ then $|g| \leq \epsilon + \{|g| > \epsilon\}$. Proof?

- [4] Define $\overline{\mathcal{M}}^+ = \overline{\mathcal{M}}^+(\mathcal{X}, \mathcal{A}, \mu)$ to consist of all those functions f mapping \mathcal{X} into $[0, \infty]$ for which there exists $g, h \in \mathcal{M}^+ = \mathcal{M}^+(\mathcal{X}, \mathcal{A}, \mu)$ with $g(x) \leq f(x) \leq g(x) + h(x)$ for all x and $\mu h = 0$. You should NOT assume that $f \in \mathcal{M}^+$. Call the pair g, g + h an \mathcal{M}^+ -sandwich for f.
 - (i) Show that there is no ambiguity in defining $\overline{\mu} : \overline{\mathcal{M}}^+ \to [0, \infty]$ by $\overline{\mu}f = \mu g$ for an arbitrarily chosen \mathcal{M}^+ -sandwich for f. That is, show that if g_1, g_1+h_1 and g_2, g_2+h_2 are both sandwiches for f then $\mu g_1 = \mu g_2$.
 - (ii) Define $\overline{\mathcal{A}} := \{D \subseteq \mathfrak{X} : \mathbf{1}_D \in \overline{\mathfrak{M}}^+\}$. Show that $\overline{\mathcal{A}}$ is a sigma-field with $\overline{\mathcal{A}} \supseteq \mathcal{A}$. Show also that if E is a subset of \mathfrak{X} for which $E \subseteq N$, for some $N \in \mathcal{N}_{\mu}$, then $E \in \overline{\mathcal{A}}$.
 - (iii) Show that $\overline{\mathcal{M}}^+ = \mathcal{M}(\mathcal{X}, \overline{\mathcal{A}}).$
 - (iv) Show that $\overline{\mu}$ defines an increasing, linear functional on $\overline{\mathcal{M}}^+$ with the Monotone Convergence property.
 - (v) Show that the restriction of $\overline{\mu}$ to (the indicator functions of sets in) $\overline{\mathcal{A}}$ is a measure and that $\overline{\mu}$ is the integral with respect to that measure.