Statistics 330b/600b, Math 330b spring 2014

Homework # 3 Due: Thursday 6 February

Please attempt at least the starred problems.

- [1] Let Ψ be a convex, increasing function for which $\Psi(0) = 0$ and $\Psi(x) \to \infty$ as $x \to \infty$. In class I defined $\mathcal{L}^{\Psi}(\mathfrak{X}, \mathcal{A}, \mu)$ to be the set of all real-valued measurable functions f on \mathfrak{X} for which $\mu \Psi(|f|/c_0) < \infty$ for at least one positive real constant c_0 . I also defined $||f||_{\Psi} := \inf\{c > 0 : \mu \Psi(|f|/c) \le 1\}$ for $f \in \mathcal{L}^{\Psi}(\mathfrak{X}, \mathcal{A}, \mu)$. Prove (rigorously) that the infimum is achieved provided $0 < ||f||_{\Psi}$.
- *[2] A set \mathcal{H} of bounded, real-valued functions on a set \mathcal{X} is called a λ -space if:
 - (a) It is a vector space under the operations of pointwise addition and pointwise multiplication by constants.
 - (b) The constant function $\mathbf{1}$ belongs to \mathcal{H} .
 - (c) If $\{h_n : n \in \mathbb{N}\} \subset \mathcal{H}$ and $h_n(x) \uparrow h(x)$ for each x and $\sup_x h(x) < \infty$ then $h \in \mathcal{H}$.

Define $\mathcal{A} := \{A \subseteq \mathfrak{X} : \mathbf{1}_A \in \mathcal{H}\}$. Initially suppose also that \mathcal{H} is stable under pairwise products of functions. Follow the first six steps to show that \mathcal{A} is a sigma-field and \mathcal{H} consists of precisely those bounded real functions that are \mathcal{A} -measurable.

(i) If $\{h_n : n \in \mathbb{N}\} \subset \mathcal{H}$ and $\sup_x |h_n(x) - h(x)| \to 0$, show that $h \in \mathcal{H}$. Hint: Take a subsequence $\{n(k) : k \in \mathbb{N}\}$ along which $\sup_x |h_{n(k)}(x) - h(x)| \leq \delta_k := 2^{-k}$. Then show that

$$h_{n(k+1)}(x) + \delta_{k+1} + \delta_k \ge h(x) + \delta_k \ge h_{n(k)}(x).$$

Deduce that $h_{n(k)} + R_k$, for $R_k = 3 \sum_{i \le k} \delta_i$, increases for to h(x) + 3, for each x.

- (ii) Suppose $h \in \mathcal{H}$ and $\sup_x |h(x)| = M < \infty$. By a small variation on Problem [3], there exists polynomials p_n for which $\sup_{|t| \leq M} |p_n(t) |t|| \to 0$. Deduce that $h_n := p_n(h)$ converges uniformly to |h|, so that $|h| \in \mathcal{H}$.
- (iii) If $h_1, h_2 \in \mathcal{H}$ show that $h_1 \vee h_2$ and $h_1 \wedge h_2$ both belong to \mathcal{H} . Hint: $a \vee b = (a+b+|a-b|)/2$ for all $a, b \in \mathbb{R}$.
- (iv) Show that \mathcal{A} is a sigma-field. Hint: $\bigcup_{n \in \mathbb{N}} A_n = \lim_n \max_{i \leq n} A_i$.
- (v) If $h \in \mathcal{H}$ define $h_1 := \min(1, h^+)$. Show that $h_1 \in \mathcal{H}$ and that $\{h \ge 1\} = \lim_{n \to \infty} h_1^n$ belongs to \mathcal{H} . Deduce that h is \mathcal{A} -measurable. Note: It is not enough just to have $\{h \ge 1\} \in \mathcal{A}$.
- (vi) Show that each bounded, *A*-measurable function belongs to *H*. Hint: Increasing limits of simple functions.

Now suppose \mathfrak{G} is a set of bounded real functions on \mathfrak{X} and \mathfrak{H} is the smallest λ -space for which $\mathfrak{H} \supseteq \mathfrak{G}$. Suppose also that \mathfrak{G} is stable under pairwise products.

- (vii) Show that $\mathcal{H}_1 := \{h_1 \in \mathcal{H} : h_1g \in \mathcal{H} \text{ for all } g \in \mathcal{G}\}\$ is a λ -space. Deduce that $\mathcal{H}_1 = \mathcal{H}$.
- (viii) Show that $\mathcal{H}_2 := \{h_2 \in \mathcal{H} : h_2 h \in \mathcal{H} \text{ for all } h \in \mathcal{H}\}$ is a λ -space. Deduce that $\mathcal{H}_2 = \mathcal{H}$, that is, \mathcal{H} is stable under pairwise products.
- (ix) Write $\sigma(\mathfrak{G})$ for the smallest sigma-field on \mathfrak{X} for which each $g \in \mathfrak{G}$ is $\sigma(\mathfrak{G}) \setminus \mathcal{B}(\mathbb{R})$ measurable. Show that $\sigma(\mathfrak{G}) \subseteq \sigma(\mathfrak{H}) = \mathcal{A}$. Deduce that every bounded, $\sigma(\mathfrak{G})$ measurable real function belongs to \mathfrak{H} .
- *[3] For each θ in [0, 1] let X_{θ} have a Binomial (n, θ) distribution. That is,

$$\mathbb{P}\{X_{\theta} = k\} = \binom{n}{k} \theta^k (1-\theta)^{n-k} \quad \text{for } k = 0, 1, \dots, n$$

You may assume without proof that $\mathbb{P}X_{\theta} = n\theta$ and $\mathbb{P}(X_{\theta} - n\theta)^2 = n\theta(1 - \theta)$.

Let f be a continuous function defined on [0, 1]. Remember that f must also be uniformly continuous: for each fixed $\epsilon > 0$ there exists a $\delta_{\epsilon} > 0$ such that

(*) $|f(s) - f(t)| \le \epsilon$ whenever $|s - t| \le \delta_{\epsilon}$, for s, t in [0, 1].

Remember also that |f| must be uniformly bounded, say, $\sup_x |f(x)| = M < \infty$.

- (i) Show that $p_n(\theta) := \mathbb{P}f(X_{\theta}/n)$ is a polynomial in θ .
- (ii) Show that $|f(X_{\theta}/n) f(\theta)| \le \epsilon + 2M|X_{\theta} n\theta|^2/(n\delta_{\epsilon})^2$.
- (iii) Deduce that $\sup_{0 \le \theta \le 1} |p_n(\theta) f(\theta)| < 2\epsilon$ for *n* large enough. That is, deduce that $f(\cdot)$ can be uniformly approximated by polynomials over the range [0, 1], a result known as the *Weierstrass approximation theorem*.