Statistics 330b/600b, Math 330b spring 2014

Homework # 4 Due: Thursday 13 February

Please attempt at least the starred problems.

*[1] Suppose \mathcal{A} is a sigma-field on a set \mathcal{X} and \mathcal{B} is a countably generated sigma-field on a set \mathcal{Y} , that is, $\mathcal{B} = \sigma(\mathcal{E})$ for some countable $\mathcal{E} \subseteq \mathcal{B}$. Suppose also that \mathcal{B} separates the points of \mathcal{Y} : if $y_1 \neq y_2$ then there exists a set $B \in \mathcal{B}$ for which $y_1 \in B$ and $y_2 \in B^c$. Without loss of generality \mathcal{E} is stable under the formation of complements, so that, by the result from HW1.2, \mathcal{E} also separates the points of \mathcal{Y} .

Suppose T is an $\mathcal{A}\setminus\mathcal{B}$ -measurable map from \mathfrak{X} into \mathcal{Y} . Define graph $(T) := \{(x, Tx) : x \in \mathfrak{X}\}.$

- (i) Define $H := \bigcup_{E \in \mathcal{E}} (T^{-1}(E^c)) \times E$. Show that $H \subseteq \operatorname{graph}(T)^c$.
- (ii) If $y \neq Tx$, with $x \in \mathfrak{X}$ and $y \in \mathfrak{Y}$, show that $(x, y) \in H$. Deduce that $\operatorname{graph}(T)^c \subseteq H$ and hence $\operatorname{graph}(T) \in \mathcal{A} \otimes \mathcal{B}$.

Remark. A topology \mathcal{G} (= all open subsets of \mathcal{X}) on a set \mathcal{X} is said to be countably generated if there exists a countable subset \mathcal{G}_0 of \mathcal{G} such that $G = \bigcup \{G_0 \in \mathcal{G}_0 : G_0 \subseteq G\}$ every each $G \in \mathcal{G}$. For example, the usual topologies on Euclidean spaces are countably generated: take \mathcal{G}_0 as the set of all open balls with rational radii and centers in some fixed countable dense subset.

[2] Let $(\mathfrak{X}_1, \mathfrak{G}_1)$ and $(\mathfrak{X}_2, \mathfrak{G}_2)$ be topological spaces equipped with their Borel sigmafields $\mathcal{B}(\mathfrak{X}_i) = \sigma(\mathfrak{G}_i)$. Equip $\mathfrak{X}_1 \times \mathfrak{X}_2$ with the product topology and its Borel sigma-field $\mathcal{B}(\mathfrak{X}_1 \times \mathfrak{X}_2)$. (The open sets in the product space are, by definition, all possible unions of sets $G_1 \times G_2$, with G_i open in \mathfrak{X}_i .)

If you are unfamiliar with general topology you may assume $\mathfrak{X}_1 = \mathfrak{X}_2 = \mathbb{R}$.

- (i) Show that $\mathcal{B}(\mathfrak{X}) \otimes \mathcal{B}(\mathfrak{Y}) \subseteq \mathcal{B}(\mathfrak{X} \times \mathfrak{Y})$. Hint: First show that the set $\mathcal{B}_1 = \{B_1 \in \mathcal{B}(\mathfrak{X}_1) : B_1 \times \mathfrak{X}_2 \in \mathcal{B}(\mathfrak{X}_1 \times \mathfrak{X}_2)\}$ is a σ -field for which $\mathcal{B}_1 \supseteq \mathcal{G}_1$.
- (ii) If both \mathfrak{X} and \mathfrak{Y} have countably generated topologies, prove $\mathfrak{B}(\mathfrak{X})\otimes\mathfrak{B}(\mathfrak{Y})=\mathfrak{B}(\mathfrak{X}\times\mathfrak{Y})$.
- *[3] Suppose X is a real-valued random variable, defined on a set Ω equipped with a sigma-field \mathcal{F} . Show that the set $\{(\omega, t) \in \Omega \times \mathbb{R} : X(\omega) > t\}$ belongs to $\mathcal{F} \otimes \mathcal{B}(\mathbb{R})$.
- [4] Let $(\mathfrak{X}, \mathcal{A}, \mu)$ and $(\mathfrak{Y}, \mathfrak{B}, \nu)$ be two measure spaces, with both μ and ν sigmafinite. Write \mathfrak{G} for the set of all functions expressible as finite linear combinations of measurable rectangles. That is, a typical g in \mathfrak{G} is expressible as a finite sum $\sum_{i=1}^{k} \alpha_i \{x \in A_i, y \in B_i\}$ for some sets $A_i \in \mathcal{A}$ and $B_i \in \mathfrak{B}$ and real numbers α_i , for $i = 1, 2, \ldots, k$.

Show that for each f in $\mathcal{L}^2(\mathfrak{X} \times \mathfrak{Y}, \mathcal{A} \otimes \mathfrak{B}, \mu \otimes \nu)$ and each $\epsilon > 0$ there exist a $g \in \mathfrak{G}$ such that $\mu \otimes \nu |f - g|^2 < \epsilon^2$. Follow these steps.

- (i) First suppose that both μ and ν are finite measures and |f| is bounded. Use a lambda-space argument to establish the asserted approximation property.
- (ii) Extend to the sigma-finite case with f possibly unbounded. Hint: First approximate the function f by some $f_n := (-n) \lor (f \land n)$.