Statistics 330b/600b, Math 330b spring 2014

Homework # 6 Due: Thursday 27 February

Please attempt at least the starred problems.

- *[1] Suppose X and Y are independent real-valued random variables for which X = Y almost surely. Use Fubini to show that there must exist some $c \in \mathbb{R}$ for which X = c almost surely.
- *[2] Suppose T is a function from a set \mathfrak{X} into a set \mathfrak{Y} , which is equipped with a σ -field \mathfrak{B} . Recall that $\sigma(T) := \{T^{-1}B : B \in \mathfrak{B}\}$ is the smallest sigma-field on \mathfrak{X} for which T is $\sigma(T) \setminus \mathfrak{B}$ -measurable.

Show that to each f in $\mathcal{M}^+(\mathfrak{X}, \sigma(T))$ there exists a g in $\mathcal{M}^+(\mathfrak{Y}, \mathcal{B})$ such that $f = g \circ T$ (that is, f(x) = g(T(x)), for all x in \mathfrak{X}) by following these steps.

- (i) If f is the indicator function of $T^{-1}(B)$ and g is the indicator function of B, show that $f = g \circ T$.
- (ii) Consider the case where $f \in \mathcal{M}^+_{\text{simple}}(\mathfrak{X}, \sigma(T))$.
- (iii) Suppose $f_n = g_n \circ T$ is a sequence in $\mathcal{M}^+_{\text{simple}}(\mathfrak{X}, \sigma(T))$ that increases pointwise to f. Define $g(y) = \limsup g_n(y)$ for each $y \text{ in } \mathcal{Y}$. Show that g has the desired property.
- (iv) In part (iii), why can't you assume that $\lim g_n(y)$ exists for each y in \mathcal{Y} ?
- *[3] In class I sketched some of the ideas needed to prove the following version of the SLLN: if X_1, X_2, \ldots are independent and identically distributed random variables with $\mathbb{P}|X_1| < \infty$ then $(X_1 + \cdots + X_n)/n \to \mathbb{P}X_1$ almost surely. Use this result to deduce the following extension: Suppose Y_1, Y_2, \ldots are independent and identically distributed random variables taking values in $[0, \infty)$ for which $\mathbb{P}Y_1 = +\infty$. Then $(Y_1 + \cdots + Y_n)/n \to \infty$ almost surely.
- [4] Suppose X_1, X_2, \ldots are independent random variables with $\mathbb{P}X_i = 0$ for each i and $\sup_i \mathbb{P}X_i^{2k} = M < \infty$ for some positive integer k. Provide a convincing argument in less than a page to show that

 $\mathbb{P}\left(X_1 + \dots + X_n\right)^{2k} = O(n^k).$