Statistics 330b/600b, Math 330b spring 2014 Homework # 7

Due: Thursday 6 March

Please attempt at least the starred problems.

- *[1] Suppose $\xi \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{G} is a sub- σ -field of \mathcal{F} .
 - (i) Suppose $\mathbb{P}\xi G = 0$ for all $G \in \mathcal{G}$. Show that $\mathbb{P}(\xi g) = 0$ for all \mathcal{G} -measurable random variables g for which $\mathbb{P}|\xi g| < \infty$.
 - (ii) Suppose $\mathbb{P}\xi G \ge 0$ for all $G \in \mathcal{G}$. For which \mathcal{G} -measurable random variables g can you conclude that $\mathbb{P}(\xi g) \ge 0$? Proof required.
- *[2] Suppose W and Z are nonnegative random variables for which, for some positive constants β and C,

 $t\mathbb{P}\{W > \beta t\} \le C\mathbb{P}Z\{W > t\} \qquad \text{for all } t > 0.$

Suppose also that $\mathbb{P}[Z]^p < \infty$ for some p in $(1, \infty)$. Show that

$$||W||_{p} \leq Cp\beta^{p} ||Z||_{p} / (p-1).$$

To make things slightly easier, I will let you assume that $||W||_p < \infty$. For a truly virtuoso effort, you might also show that the finiteness of $||W||_p$ actually follows from the finiteness of $||Z||_p$.

[3] Suppose $\{(S_i, \mathcal{F}_i) : i = 0, 1, 2, ..., N\}$ is a nonnegative submartingale. For some fixed p > 1 suppose $\mathbb{P}S_i^p < \infty$ for each *i*. Let q > 1 be defined by $p^{-1} + q^{-1} = 1$. Define $M_n = \max_{i < n} S_i$. Show that

 $\mathbb{P}\left(M_{n}^{p}\right) \leq q^{p} \mathbb{P}S_{n}^{p}.$

You may use the result from Problem [2] and the upper bound for $x\mathbb{P}\{M_n \geq x\}$ proved with the Stopping Time Lemma.

- $\begin{array}{ll} [4] & \quad \text{Suppose } \{(X_n, \mathcal{F}_n) : n \in \mathbb{N}_0\} \text{ is a martingale for which } \sup_{n \in \mathbb{N}_0} \mathbb{P}X_n^2 < \infty. \\ & \quad \text{Write } X_n \text{ as a sum of increments, } X_n = X_0 + \sum_{1 \leq i \leq n} \xi_i. \text{ In class I showed that} \\ & \quad \mathbb{P}X_n^2 = \mathbb{P}X_0^2 + \sum_{1 \leq i \leq n} \sigma_i^2, \text{ where } \sigma_i^2 = \mathbb{P}\xi_i^2. \text{ Thus } \sum_{i \in \mathbb{N}} \sigma_i^2 < \infty. \end{array}$
 - (i) Show that $\{X_n\}$ is a Cauchy sequence in $\mathcal{L}^2(\Omega, \mathfrak{F}, \mathbb{P})$ and hence $\mathbb{P}|X_n Z|^2 \to 0$ as $n \to \infty$ for some Z in $\mathcal{L}^2(\Omega, \mathfrak{F}, \mathbb{P})$.
 - (ii) For each $\epsilon > 0$, show that

$$\mathbb{P}\{\sup_{i>n} |X_i - X_n| > \epsilon\} \le R(n)/\epsilon^2 := \epsilon^{-2} \sum_{k \ge n+1} \sigma_k^2$$

(iii) Show that there exists an increasing sequence of integers $n(1) < n(2) < \dots$ for which

$$\sum_{k\in\mathbb{N}} \mathbb{P}\{\sup_{i>n(k)} |X_i - X_{n(k)}| > k^{-1}\} < \infty.$$

- (iv) Deduce that $\{X_n(\omega)\}\$ is a Cauchy sequence of real numbers for \mathbb{P} almost all ω .
- (v) Deduce that $X_n \to Z$ almost surely.